16 research outputs found

    Effect of Surface Modification on Viability of L929 Cells on Zirconia Nanocomposite Substrat

    Get PDF
    Introduction: Zirconia bioceramic can be considered for metallic replacement in dental implant applications. A proper method of surface modification may promote better osseointegration.Methods: In study evaluated viability of fibroblast cell following surface treatment. Therefore, viability L929 cells were characterized using MTT assay and scanning electron microscopy.Results: The viability assessment determined significant differences A-Y-TZP20 without surface treatment as compared to laser surface treatment (B), laser surface treatment + hydroxyapatite-yttrium stabilized tetragonal zirconia nanocomposite coat (C) and control. This study demonstrated that L929 cells approximately proliferated and spread on A-Y-TZP20 nanocomposite disk in laser surface treatment(B), Laser surface treatment + hydroxiapatite-yttrium stabilized tetragonal zirconia nanocomposite coat (C) groups similar to control group.Conclusion: Laser surface treatment showed positive effect on the viability of L929 cells

    New approaches in Dental Research (A memorial to Professor Seyed Behrouz Mousavi)

    No full text

    A glance to 2011

    No full text

    Effect of Postoperative Bleaching on Microleakage of Etch-and-Rinse and Self-etch Adhesives

    No full text
    Background: Bleaching the discoloured teeth may affect the tooth/composite interface. The aim of this in vitro experimental study was to evaluate the effect of vital tooth bleaching on microleakage of existent class V composite resin restorations bonded with three dental bonding agents. Methods : Class V cavities were prepared on buccal surfaces of 72 intact, extracted human anterior teeth with gingival margins in dentin and occlusal margins in enamel, and randomly divided into 3 groups. Cavities in the three groups were treated with Scotch bond Multi-Purpose, a total etch system and Prompt L-Pop and iBond, two self-etch adhesives. All teeth were restored with Z250 resin composite material and thermo-cycled. Each group was equally divided into the control and the bleached subgroups (n = 12). The bleached subgroups were bleached with 15% carbamide peroxide gel for 8 hours a day for 15 days. Microleakage scores were evaluated on the incisal and cervical walls. Data were analyzed using Kruskal-Wallis, Mann-Whitney and Bonferroni post-hoc tests (α = 0.05). Results: Bleaching with carbamide peroxide gel significantly increased the microleakage of composite restorations in Prompt L-Pop group at dentinal walls (P = 0.001). Bleaching had no effect on microleakage of restorations in the Scotch bond Multi-Purpose and iBond groups. Conclusion: Vital tooth bleaching with carbamide peroxide gel has an adverse effect on marginal seal of dentinal walls of existent composite resin restorations bonded with prompt L-Pop self-etch adhesive

    A randomized clinical trial evaluating the success rate of ethanol wet bonding technique and two adhesives

    No full text
    Background : Composite resin restorations may have a short lifespan due to the degradation of resin-dentin interface. Ethanol wet bonding technique may extend the longevity of resin-dentin bond. The purpose of this one year randomized clinical trial was to compare clinical performance of two adhesives with ethanol wet bonding technique. Materials and Methods: This randomized clinical trial was performed on 36 non-carious cervical lesions in 12 patients restored with composite resin using one of the following approaches: 1. OptiBond FL (Kerr, USA); 2. Clearfil SE Bond (Kuraray, Japan) with enamel etching and 3. Ethanol wet bonding technique with the part of adhesive of OptiBond FL. The clinical success rate was assessed after 24 h, 6, 9 and 12 months according to the United States Public Health Service (USPHS) criteria: Marginal discoloration, marginal defect, retention rate, caries occurrence, and postoperative sensitivity. The tooth vitality was also assessed. Results : The retention rate was 100% at baseline and at 6 months follow up for all types of bonding protocols and was 91.67% at 9 and 12 months follow up for ethanol wet bonding group. None of the restorations in three groups showed marginal defects, marginal discoloration or caries occurrence and were vital after 12 months. There was no statistically significant difference between three groups after 12 months follow up (p value = 0.358). Conclusions : Composite restorations placed using ethanol wet bonding technique presented equal performance to the other groups

    Effect of Alumina Addition to Zirconia Nano-composite on Low Temperature Degradation Process and Biaxial Strength

    No full text
    Ceramic dental materials have been considered as alternatives to metals for dental implants application. In this respect, zirconia tetragonal stabilized with %3 yttrium, is of great importance among the ceramic materials for endosseous dental implant application. Because of its good mechanical properties and color similar to tooth. The aim and novelty of this study was to design and prepare Y-TZP nano-composite to reduce the degradation process at low temperature by alumina addition and maintaining submicron grain sized. Also, flexural strength of nano-composite samples was evaluated. Toward this purpose, alumina-Y-TZP nano-composites containing 0–30 vol% alumina (denoted as A-Y-TZP 0-30) were fabricated using α-alumina and Y-TZP nano-sized by sintering pressure less method. The synthesized samples were characterized using x-ray diffraction, field emission scanning electron microscopy equipped with energy dispersive x-ray spectroscopy techniques. Nano-composite samples with high density (≥96%) and grain sized of ≤ 400 nm was obtained by sintering at 1270 °C for 170 min. After low temperature degradation test (LTD), A-Y-TZP20 and A-Y-TZP30 not showed monoclinic phase and the flexural strength in all of samples were higher than A-Y-TZP0. It was concluded that the grains were remained in submicron sized and A-Y-TZP20 and A-Y-TZP30 did not present biaxial strength reduction after LTD test

    Shear Bond Strengths and Morphological Evaluation of Filled and Unfilled Adhesive Interfaces to Enamel and Dentine

    No full text
    In this laboratory study shear bond strengths of three filled and one unfilled adhesive systems to enamel and dentine were compared. Forty-eight extracted intact noncarious human mandibular molars were randomly assigned to two groups of 24 one for bonding to enamel and the other for bonding to dentine. Buccal and lingual surfaces of each tooth were randomly assigned for application of each one of filled (Prime & Bond NT (PBNT), Optibond Solo Plus (OBSP), and Clearfil SE Bond (CSEB)) and unfilled (Single Bond (SB)) adhesive systems (n=12). A universal resin composite was placed into the translucent plastic cylinders (3 mm in diameter and 2 mm in length) and seated against the enamel and dentine surfaces and polymerized for 40 seconds. Shear bond strength was determined using a universal testing machine, and the results were statistically analyzed using two-way ANOVA, one-way ANOVA, t-test, and Tukey HSD post hoc test with a 5% level of significance.There were no statistically significant differences in bond strength between the adhesive systems in enamel, but CSEB and SB exhibited significantly higher and lower bond strength to dentine, respectively, than the other tested adhesive systems while there were no statistically significant differences between PBNT and OBSP

    Fracture resistance of structurally compromised and normal endodontically treated teeth restored with different post systems: An in vitro study

    No full text
    Background: With the aim of developing methods that could increase the fracture resistance of structurally compromised endodontically treated teeth, this study was conducted to compare the effect of three esthetic post systems on the fracture resistance and failure modes of structurally compromised and normal roots. Materials and Methods: Forty five extracted and endodontically treated maxillary central teeth were assigned to 5 experimental groups (n=9). In two groups, the post spaces were prepared with the corresponding drills of the post systems to be restored with double taper light posts (DT.Light-Post) (group DT.N) and zirconia posts (Cosmopost) (group Zr.N). In other 3 groups thin wall canals were simulated to be restored with Double taper Light posts (DT.W), double taper Light posts and Ribbond fibers (DT+R.W) and Zirconia posts (Zr.W). After access cavity restoration and thermocycling, compressive load was applied and the fracture strength values and failure modes were evaluated. Data were analyzed using two-way ANOVA, Tukey and Fisher exact tests (P<0.05). Results: The mean failure loads (N) were 678.56, 638.22, 732.44, 603.44 and 573.67 for groups DT.N, Zr.N, DT.W, DT+R.W and Zr.w respectively. Group DT+R.W exhibited significantly higher resistance to fracture compared to groups Zr.N, DT.W and Zr.w (P<0.05). A significant difference was detected between groups DT.N and Zr.W (P=0.027). Zirconia posts showed significantly higher root fracture compared to fiber posts (P=0.004). Conclusion: The structurally compromised teeth restored with double taper light posts and Ribbond fibers showed the most fracture resistance and their strengths were comparable to those of normal roots restored with double taper light posts. More desirable fracture patterns were observed in teeth restored with fiber posts

    The effect of nanoclay filler loading on the flexural strength of fiber-reinforced composites

    No full text
    Background: Flexural strength of prosthesis made with dental composite resin materials plays an important role in their survival. The aim of this study was investigating the effect of nanoclay fillers and Poly (methyl methacrylate)-grafted (PMMA-grafted) nanoclay fillers loading on the flexural strength of fiber-reinforced composites (FRCs). Materials and Methods: Standard FRC bars (2 Χ 2 Χ 25 mm) for flexural strength testing were prepared with E-glass fibers and a synthetic resin loaded with different quantities of unmodified nanoclay and PMMA-grafted nanoclay filler particles (0% as control group, 0.2%, 0.5%, 1%, 2%, 5%). Flexural strength and flexural modulus were determined. The data were analyzed using 2-way, 1-way ANOVA and post hoc Tukey′s test (α = 0.05). The fracture surfaces were evaluated by Scanning Electron Microscopy. Results: For groups with the same concentration of nanoparticles, PMMA-grafted filler-loaded group showed significantly higher flexural strength, except for 0.2% wt. For groups that contain PMMA-grafted nanoclay fillers, the 2% wt had the highest flexural strength value with significant difference to other subgroups. 1% wt and 2% wt showed significantly higher values compared to control (P 0.05). Flexural modulus of 2%, 5% wt PMMA-grafted and 0.5%, 1%, 2%, 5% wt unmodified nanoclay particles-loaded subgroups decreased significantly compared to control group (P < 0.05). Conclusions: PMMA-grafted nanoclay filler loading may enhance the flexural strength of FRCs. Addition of unmodified nanoparticles cannot significantly improve the flexural strength of FRCs. Addition of both unmodified and PMMA-grafted nanoclay particles in some concentrations decreased the flexural modulus
    corecore