76 research outputs found

    A genetically modified adenoviral vector with a phage display-derived peptide incorporated into fiber fibritin chimera prolongs survival in experimental glioma

    Get PDF
    The dismal clinical context of advanced-grade glioma demands the development of novel therapeutic strategies with direct patient impact. Adenovirus-mediated virotherapy represents a potentially effective approach for glioma therapy. In this research, we generated a novel glioma-specific adenovirus by instituting more advanced genetic modifications that can maximize the efficiency and safety of therapeutic adenoviral vectors. In this regard, a glioma-specific targeted fiber was developed through the incorporation of previously published glioma-specific, phage-panned peptide (VWT peptide) on a fiber fibritin-based chimeric fiber, designated as “GliomaFF.” We showed that the entry of this virus was highly restricted to glioma cells, supporting the specificity imparted by the phage-panned peptide. In addition, the stability of the targeting moiety presented by fiber fibritin structure permitted greatly enhanced infectivity. Furthermore, the replication of this virus was restricted in glioma cells by controlling expression of the E1 gene under the activity of the tumor-specific survivin promoter. Using this approach, we were able to explore the combinatorial efficacy of various adenoviral modifications that could amplify the specificity, infectivity, and exclusive replication of this therapeutic adenovirus in glioma. Finally, virotherapy with this modified virus resulted in up to 70% extended survival in an in vivo murine glioma model. These data demonstrate that this novel adenoviral vector is a safe and efficient treatment for this difficult malignancy

    Surgical management and outcome of newly diagnosed glioblastoma without contrast enhancement ('low grade appearance') - a report of the RANO resect group

    Get PDF
    BACKGROUND: Resection of the contrast-enhancing (CE) tumor represents the standard of care in newly diagnosed glioblastoma. However, some tumors ultimately diagnosed as glioblastoma lack contrast enhancement and have a 'low grade appearance' on imaging (non-CE glioblastoma). We aimed to (I) volumetrically define the value of non-CE tumor resection in the absence of contrast enhancement, and to (II) delineate outcome differences between glioblastoma patients with and without contrast enhancement. METHODS: The RANO resect group retrospectively compiled a global, eight-center cohort of patients with newly diagnosed glioblastoma per WHO 2021 classification. The associations between post-operative tumor volumes and outcome were analyzed. Propensity score-matched analyses were constructed to compare glioblastomas with and without contrast enhancement. RESULTS: Among 1323 newly diagnosed IDH-wildtype glioblastomas, we identified 98 patients (7.4%) without contrast enhancement. In such patients, smaller post-operative tumor volumes were associated with more favourable outcome. There was an exponential increase in risk for death with larger residual non-CE tumor. Accordingly, extensive resection was associated with improved survival compared to lesion biopsy. These findings were retained on a multivariable analysis adjusting for demographic and clinical markers. Compared to CE glioblastoma, patients with non-CE glioblastoma had more favourable clinical profile and superior outcome as confirmed in propensity score analyses by matching the patients with non-CE glioblastoma to patients with CE glioblastoma using a large set of clinical variables. CONCLUSIONS: The absence of contrast enhancement characterizes a less aggressive clinical phenotype of IDH-wildtype glioblastomas. Maximal resection of non-CE tumors has prognostic implications and translates into favourable outcome

    Prognostic evaluation of re-resection for recurrent glioblastoma using the novel RANO classification for extent of resection:A report of the RANO resect group

    Get PDF
    BACKGROUND: The value of re-resection in recurrent glioblastoma remains controversial as a randomized trial that specifies intentional incomplete resection cannot be justified ethically. Here, we aimed to (1) explore the prognostic role of extent of re-resection using the previously proposed Response Assessment in Neuro-Oncology (RANO) classification (based upon residual contrast-enhancing (CE) and non-CE tumor), and to (2) define factors consolidating the surgical effects on outcome. METHODS: The RANO resect group retrospectively compiled an 8-center cohort of patients with first recurrence from previously resected glioblastomas. The associations of re-resection and other clinical factors with outcome were analyzed. Propensity score-matched analyses were constructed to minimize confounding effects when comparing the different RANO classes. RESULTS: We studied 681 patients with first recurrence of Isocitrate Dehydrogenase (IDH) wild-type glioblastomas, including 310 patients who underwent re-resection. Re-resection was associated with prolonged survival even when stratifying for molecular and clinical confounders on multivariate analysis; ≤1 cm3 residual CE tumor was associated with longer survival than non-surgical management. Accordingly, "maximal resection" (class 2) had superior survival compared to "submaximal resection" (class 3). Administration of (radio-)chemotherapy in the absence of postoperative deficits augmented the survival associations of smaller residual CE tumors. Conversely, "supramaximal resection" of non-CE tumor (class 1) was not associated with prolonged survival but was frequently accompanied by postoperative deficits. The prognostic role of residual CE tumor was confirmed in propensity score analyses. CONCLUSIONS: The RANO resect classification serves to stratify patients with re-resection of glioblastoma. Complete resection according to RANO resect classes 1 and 2 is prognostic.</p

    High-Flow Vascular Malformations in Children.

    No full text

    Schwannomatosis of the Spinal Accessory Nerve: A Case Report

    No full text
    corecore