2,511 research outputs found

    Evolution of a collapsing and exploding Bose-Einstein condensate in different trap symmetries

    Full text link
    Based on the time-dependent Gross-Pitaevskii equation we study the evolution of a collapsing and exploding Bose-Einstein condensate in different trap symmetries to see the effect of confinement on collapse and subsequent explosion, which can be verified in future experiments. We make prediction for the evolution of the shape of the condensate and the number of atoms in it for different trap symmetries (cigar to pancake) as well as in the presence of an optical lattice potential. We also make prediction for the jet formation in different cases when the collapse is suddenly terminated by changing the scattering length to zero via a Feshbach resonance.Comment: 8 pages, 11 ps figures, Physical Review

    Dynamics and phase evolution of Bose-Einstein condensates in one-dimensional optical lattices

    Full text link
    We report experimental results on the dynamics and phase evolution of Bose-Einstein condensates in 1D optical lattices. The dynamical behaviour is studied by adiabatically loading the condensate into the lattice and subsequently switching off the magnetic trap. In this case, the condensate is free to expand inside the periodic structure of the optical lattice. The phase evolution of the condensate, on the other hand, can be studied by non-adiabatically switching on the periodic potential. We observe decays and revivals of the interference pattern after a time-of-flight.Comment: 6 pages, 5 figures; submitted to the Proceedings of the 11th Laser Physics Workshop, Bratislava 200

    Rydberg excitation of a Bose-Einstein condensate

    Full text link
    We have performed two-photon excitation via the 6P3/2 state to n=50-80 S or D Rydberg state in Bose-Einstein condensates of rubidium atoms. The Rydberg excitation was performed in a quartz cell, where electric fields generated by plates external to the cell created electric charges on the cell walls. Avoiding accumulation of the charges and realizing good control over the applied electric field was obtained when the fields were applied only for a short time, typically a few microseconds. Rydberg excitations of the Bose-Einstein condensates loaded into quasi one-dimensional traps and in optical lattices have been investigated. The results for condensates expanded to different sizes in the one-dimensional trap agree well with the intuitive picture of a chain of Rydberg excitations controlled by the dipole-dipole interaction. The optical lattice applied along the one-dimensional geometry produces localized, collective Rydberg excitations controlled by the nearest-neighbour blockade.Comment: 7 pages, 7 figures, Laser Physics in press. arXiv admin note: text overlap with arXiv:1103.423

    Excitation and damping of collective modes of a Bose-Einstein condensate in a one-dimensional lattice

    Full text link
    The mode structure of a Bose-Einstein condensate non-adiabatically loaded into a one-dimensional optical lattice is studied by analyzing the visibility of the interference pattern as well as the radial profile of the condensate after a time-of-flight. A simple model is proposed that predicts the short-time decrease of the visibility as a function of the condensate parameters. In the radial direction, heavily damped oscillations are observed, as well as an increase in the condensate temperature. These findings are interpreted as a re-thermalization due to dissipation of the initial condensate excitations into high-lying modes.Comment: 5 pages; submitted to PR

    Sympathetic cooling and collisional properties of a Rb-Cs mixture

    Full text link
    We report on measurements of the collisional properties of a mixture of 133^{133}Cs and 87^{87}Rb atoms in a magnetic trap at μK\mu\mathrm{K} temperatures. By selectively evaporating the Rb atoms using a radio-frequency field, we achieved sympathetic cooling of Cs down to a few μK\mu\mathrm{K}. The inter-species collisional cross-section was determined through rethermalization measurements, leading to an estimate of as=595a0a_s=595 a_0 for the s-wave scattering length for Rb in the ∣F=2,mF=2>|F=2, m_F=2> and Cs in the ∣F=4,mF=4>|F=4, m_F=4> magnetic states. We briefly speculate on the prospects for reaching Bose-Einstein condensation of Cs inside a magnetic trap through sympathetic cooling

    Resonant nonlinear quantum transport for a periodically kicked Bose condensate

    Full text link
    Our realistic numerical results show that the fundamental and higher-order quantum resonances of the delta-kicked rotor are observable in state-of-the-art experiments with a Bose condensate in a shallow harmonic trap, kicked by a spatially periodic optical lattice. For stronger confinement, interaction-induced destruction of the resonant motion of the kicked harmonic oscillator is predicted.Comment: amended version, new Fig.
    • …
    corecore