3,252 research outputs found

    GeneRank: Using search engine technology for the analysis of microarray experiments

    Get PDF
    Copyright @ 2005 Morrison et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Background: Interpretation of simple microarray experiments is usually based on the fold-change of gene expression between a reference and a "treated" sample where the treatment can be of many types from drug exposure to genetic variation. Interpretation of the results usually combines lists of differentially expressed genes with previous knowledge about their biological function. Here we evaluate a method – based on the PageRank algorithm employed by the popular search engine Google – that tries to automate some of this procedure to generate prioritized gene lists by exploiting biological background information. Results: GeneRank is an intuitive modification of PageRank that maintains many of its mathematical properties. It combines gene expression information with a network structure derived from gene annotations (gene ontologies) or expression profile correlations. Using both simulated and real data we find that the algorithm offers an improved ranking of genes compared to pure expression change rankings. Conclusion: Our modification of the PageRank algorithm provides an alternative method of evaluating microarray experimental results which combines prior knowledge about the underlying network. GeneRank offers an improvement compared to assessing the importance of a gene based on its experimentally observed fold-change alone and may be used as a basis for further analytical developments

    Magnetic resonance imaging of placentome development in the pregnant Ewe

    Get PDF
    INTRODUCTION: Novel imaging measurements of placental development are difficult to validate due to the invasive nature of gold-standard procedures. Animal studies have been important in validation of magnetic resonance imaging (MRI) measurements in invasive preclinical studies, as they allow for controlled experiments and analysis of multiple time-points during pregnancy. This study characterises the longitudinal diffusion and perfusion properties of sheep placentomes using MRI, measurements that are required for future validation studies. METHODS: Pregnant ewes were anaesthetised for a MRI session on a 3T scanner. Placental MRI was used to classify placentomes morphologically into three types based on their shape and size at two gestational ages. To validate classification accuracy, placentome type derived from MRI data were compared with placentome categorisation results after delivery. Diffusion-Weighted MRI and T2-relaxometry were used to measure a broad range of biophysical properties of the placentomes. RESULTS: MRI morphological classification results showed consistent gestational age changes in placentome shape, as supported by post-delivery gold standard data. The mean apparent diffusion coefficient was significantly higher at 110 days gestation than at late gestation (~140 days; term, 150 days). Mean T2 was higher at mid gestation (152.2 ± 58.1 ms) compared to late gestation (127.8 ms ± 52.0). Significantly higher perfusion fraction was measured in late gestation placentomes that also had a significantly higher fractional anisotropy when compared to the earlier gestational age. DISCUSSION: We report baseline measurements of techniques common in placental MRI for the sheep placenta. These measurements are essential to support future validation measurements of placental MRI techniques

    The value of source data verification in a cancer clinical trial

    Get PDF
    Background Source data verification (SDV) is a resource intensive method of quality assurance frequently used in clinical trials. There is no empirical evidence to suggest that SDV would impact on comparative treatment effect results from a clinical trial. Methods Data discrepancies and comparative treatment effects obtained following 100% SDV were compared to those based on data without SDV. Overall survival (OS) and Progression-free survival (PFS) were compared using Kaplan-Meier curves, log-rank tests and Cox models. Tumour response classifications and comparative treatment Odds Ratios (ORs) for the outcome objective response rate, and number of Serious Adverse Events (SAEs) were compared. OS estimates based on SDV data were compared against estimates obtained from centrally monitored data. Findings Data discrepancies were identified between different monitoring procedures for the majority of variables examined, with some variation in discrepancy rates. There were no systematic patterns to discrepancies and their impact was negligible on OS, the primary outcome of the trial (HR (95% CI): 1.18(0.99 to 1.41), p = 0.064 with 100% SDV; 1.18(0.99 to 1.42), p = 0.068 without SDV; 1.18(0.99 to 1.40), p = 0.073 with central monitoring). Results were similar for PFS. More extreme discrepancies were found for the subjective outcome overall objective response (OR (95% CI): 1.67(1.04 to 2.68), p = 0.03 with 100% SDV; 2.45(1.49 to 4.04), p = 0.0003 without any SDV) which was mostly due to differing CT scans. Interpretation Quality assurance methods used in clinical trials should be informed by empirical evidence. In this empirical comparison, SDV was expensive and identified random errors that made little impact on results and clinical conclusions of the trial. Central monitoring using an external data source was a more efficient approach for the primary outcome of OS. For the subjective outcome objective response, an independent blinded review committee and tracking system to monitor missing scan data could be more efficient than SDV

    Testing KiDS cross-correlation redshifts with simulations

    Get PDF
    Measuring cosmic shear in wide-field imaging surveys requires accurate knowledge of the redshift distribution of all sources. The clustering-redshift technique exploits the angular cross-correlation of a target galaxy sample with unknown redshifts and a reference sample with known redshifts. It represents an attractive alternative to colour-based methods of redshift calibration. Here we test the performance of such clustering redshift measurements using mock catalogues that resemble the Kilo-Degree Survey (KiDS). These mocks are created from the MICE simulation and closely mimic the properties of the KiDS source sample and the overlapping spectroscopic reference samples. We quantify the performance of the clustering redshifts by comparing the cross-correlation results with the true redshift distributions in each of the five KiDS photometric redshift bins. Such a comparison to an informative model is necessary due to the incompleteness of the reference samples at high redshifts. Clustering mean redshifts are unbiased at |Δz|< 0.006 under these conditions. The redshift evolution of the galaxy bias of the reference and target samples represents one of the most important systematic errors when estimating clustering redshifts. It can be reliably mitigated at this level of precision using auto-correlation measurements and self-consistency relations, and will not become a dominant source of systematic error until the arrival of Stage-IV cosmic shear surveys. Using redshift distributions from a direct colour-based estimate instead of the true redshift distributions as a model for comparison with the clustering redshifts increases the biases in the mean to up to |Δz|∼0.04. This indicates that the interpretation of clustering redshifts in real-world applications will require more sophisticated (parameterised) models of the redshift distribution in the future. If such better models are available, the clustering-redshift technique promises to be a highly complementary alternative to other methods of redshift calibration

    Functional characterization of a 28-Kilobase Catabolic Island from Pseudomonas sp. Strain M1 involved in biotransformation of β-Myrcene and related plant-derived volatiles

    Get PDF
    Pseudomonas sp. strain M1 is able to mineralize highly hydrophobic and recalcitrant compounds, such as benzene, phenol, and their methylated/halogenated derivatives, as well as the backbone of several monoterpenes. The ability to use such a spectrum of compounds as the sole carbon source is, most probably, associated with a genetic background evolved under different environmental constraints. The outstanding performance of strain M1 regarding β-myrcene catabolism was elucidated in this work, with a focus on the biocatalytical potential of the β-myrcene-associated core code, comprised in a 28-kb genomic island (GI), predicted to be organized in 8 transcriptional units. Functional characterization of this locus with promoter probes and analytical approaches validated the genetic organization predictedin silicoand associated the β-myrcene-induced promoter activity to the production of β-myrcene derivatives. Notably, by using a whole-genome mutagenesis strategy, different genotypes of the 28-kb GI were generated, resulting in the identification of a novel putative β-myrcene hydroxylase, responsible for the initial oxidation of β-myrcene into myrcen-8-ol, and a sensor-like regulatory protein, whose inactivation abolished themyr + trait of M1 cells. Moreover, it was demonstrated that the range of monoterpene substrates of the M1 enzymatic repertoire, besides β-myrcene, also includes other acyclic (e.g., β-linalool) and cyclic [e.g.,R-(+)-limonene and (-)-β-pinene] molecules. Our findings are the cornerstone for following metabolic engineering approaches and hint at a major role of the 28-kb GI in the biotransformation of a broad monoterpene backbone spectrum for its future biotechnological applications.IMPORTANCEInformation regarding microbial systems able to biotransform monoterpenes, especially β-myrcene, is limited and focused mainly on nonsystematic metabolite identification. Complete and detailed knowledge at the genetic, protein, metabolite, and regulatory levels is essential in order to set a model organism or a catabolic system as a biotechnology tool. Moreover, molecular characterization of reported systems is scarce, almost nonexistent, limiting advances in the development of optimized cell factories with strategies based on the new generation of metabolic engineering platforms. This study provides new insights into the intricate molecular functionalities associated with β-myrcene catabolism inPseudomonas, envisaging the production of a molecular knowledge base about the underlying catalytic and regulatory mechanisms of plant-derived volatile catabolic pathways.Vectors from the Standard European Vector Architecture (SEVA) library and pBAM1 used in this work were kindly provided by Victor de Lorenzo (CNB-CSIC, Madrid, Spain). This work was supported by the strategic program UID/BIA/04050/2013 (POCI-01- 0145-FEDER-007569) funded by national funds through the FCT I.P. and by the ERDF through the COMPETE2020-Programa Operacional Competitividade e Internacionalização (POCI) and through a Ph.D. grant (grant SFRH/BD/76894/2011) to P.S.-C.info:eu-repo/semantics/publishedVersio

    The increase of the functional entropy of the human brain with age

    Get PDF
    We use entropy to characterize intrinsic ageing properties of the human brain. Analysis of fMRI data from a large dataset of individuals, using resting state BOLD signals, demonstrated that a functional entropy associated with brain activity increases with age. During an average lifespan, the entropy, which was calculated from a population of individuals, increased by approximately 0.1 bits, due to correlations in BOLD activity becoming more widely distributed. We attribute this to the number of excitatory neurons and the excitatory conductance decreasing with age. Incorporating these properties into a computational model leads to quantitatively similar results to the fMRI data. Our dataset involved males and females and we found significant differences between them. The entropy of males at birth was lower than that of females. However, the entropies of the two sexes increase at different rates, and intersect at approximately 50 years; after this age, males have a larger entropy

    Prenatal hypoxia induces increased cardiac contractility on a background of decreased capillary density.

    Get PDF
    Background: Chronic hypoxia in utero (CHU) is one of the most common insults to fetal development and may be associated with poor cardiac recovery from ischaemia-reperfusion injury,yet the effects on normal cardiac mechanical performance are poorly understood. Methods: Pregnant female wistar rats were exposed to hypoxia (12% oxygen, balance nitrogen)for days 10–20 of pregnancy. Pups were born into normal room air and weaned normally. At 10 weeks of age, hearts were excised under anaesthesia and underwent retrograde 'Langendorff' perfusion. Mechanical performance was measured at constant filling pressure (100 cm H2O) with intraventricular balloon. Left ventricular free wall was dissected away and capillary density estimated following alkaline phosphatase staining. Expression of SERCA2a and Nitric Oxide Synthases (NOS) proteins were estimated by immunoblotting. Results: CHU significantly increased body mass (P < 0.001) compared with age-matched control rats but was without effect on relative cardiac mass. For incremental increases in left ventricular balloon volume, diastolic pressure was preserved. However, systolic pressure was significantly greater following CHU for balloon volume = 50 μl (P < 0.01) and up to 200 μl (P < 0.05). For higher balloon volumes systolic pressure was not significantly different from control. Developed pressures were correspondingly increased relative to controls for balloon volumes up to 250 μl (P < 0.05).Left ventricular free wall capillary density was significantly decreased in both epicardium (18%; P <0.05) and endocardium (11%; P < 0.05) despite preserved coronary flow. Western blot analysis revealed no change to the expression of SERCA2a or nNOS but immuno-detectable eNOS protein was significantly decreased (P < 0.001) in cardiac tissue following chronic hypoxia in utero. Conclusion: These data offer potential mechanisms for poor recovery following ischaemia, including decreased coronary flow reserve and impaired angiogenesis with subsequent detrimental effects of post-natal cardiac performance
    • …
    corecore