5,231 research outputs found

    Meta-analytical methods to identify who benefits most from treatments: daft, deluded, or deft approach?

    Get PDF
    Identifying which individuals benefit most from particular treatments or other interventions underpins so-called personalised or stratified medicine. However, single trials are typically underpowered for exploring whether participant characteristics, such as age or disease severity, determine an individual’s response to treatment. A meta-analysis of multiple trials, particularly one where individual participant data (IPD) are available, provides greater power to investigate interactions between participant characteristics (covariates) and treatment effects. We use a published IPD meta-analysis to illustrate three broad approaches used for testing such interactions. Based on another systematic review of recently published IPD meta-analyses, we also show that all three approaches can be applied to aggregate data as well as IPD. We also summarise which methods of analysing and presenting interactions are in current use, and describe their advantages and disadvantages. We recommend that testing for interactions using within-trials information alone (the deft approach) becomes standard practice, alongside graphical presentation that directly visualises this

    From Rotating Atomic Rings to Quantum Hall States

    Get PDF
    Considerable efforts are currently devoted to the preparation of ultracold neutral atoms in the emblematic strongly correlated quantum Hall regime. The routes followed so far essentially rely on thermodynamics, i.e. imposing the proper Hamiltonian and cooling the system towards its ground state. In rapidly rotating 2D harmonic traps the role of the transverse magnetic field is played by the angular velocity. For particle numbers significantly larger than unity, the required angular momentum is very large and it can be obtained only for spinning frequencies extremely near to the deconfinement limit; consequently, the required control on experimental parameters turns out to be far too stringent. Here we propose to follow instead a dynamic path starting from the gas confined in a rotating ring. The large moment of inertia of the fluid facilitates the access to states with a large angular momentum, corresponding to a giant vortex. The initial ring-shaped trapping potential is then adiabatically transformed into a harmonic confinement, which brings the interacting atomic gas in the desired quantum Hall regime. We provide clear numerical evidence that for a relatively broad range of initial angular frequencies, the giant vortex state is adiabatically connected to the bosonic ν=1/2\nu=1/2 Laughlin state, and we discuss the scaling to many particles.Comment: 9 pages, 5 figure

    Temporal and Geographic variation in the validity and internal consistency of the Nursing Home Resident Assessment Minimum Data Set 2.0

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Minimum Data Set (MDS) for nursing home resident assessment has been required in all U.S. nursing homes since 1990 and has been universally computerized since 1998. Initially intended to structure clinical care planning, uses of the MDS expanded to include policy applications such as case-mix reimbursement, quality monitoring and research. The purpose of this paper is to summarize a series of analyses examining the internal consistency and predictive validity of the MDS data as used in the "real world" in all U.S. nursing homes between 1999 and 2007.</p> <p>Methods</p> <p>We used person level linked MDS and Medicare denominator and all institutional claim files including inpatient (hospital and skilled nursing facilities) for all Medicare fee-for-service beneficiaries entering U.S. nursing homes during the period 1999 to 2007. We calculated the sensitivity and positive predictive value (PPV) of diagnoses taken from Medicare hospital claims and from the MDS among all new admissions from hospitals to nursing homes and the internal consistency (alpha reliability) of pairs of items within the MDS that logically should be related. We also tested the internal consistency of commonly used MDS based multi-item scales and examined the predictive validity of an MDS based severity measure viz. one year survival. Finally, we examined the correspondence of the MDS discharge record to hospitalizations and deaths seen in Medicare claims, and the completeness of MDS assessments upon skilled nursing facility (SNF) admission.</p> <p>Results</p> <p>Each year there were some 800,000 new admissions directly from hospital to US nursing homes and some 900,000 uninterrupted SNF stays. Comparing Medicare enrollment records and claims with MDS records revealed reasonably good correspondence that improved over time (by 2006 only 3% of deaths had no MDS discharge record, only 5% of SNF stays had no MDS, but over 20% of MDS discharges indicating hospitalization had no associated Medicare claim). The PPV and sensitivity levels of Medicare hospital diagnoses and MDS based diagnoses were between .6 and .7 for major diagnoses like CHF, hypertension, diabetes. Internal consistency, as measured by PPV, of the MDS ADL items with other MDS items measuring impairments and symptoms exceeded .9. The Activities of Daily Living (ADL) long form summary scale achieved an alpha inter-consistency level exceeding .85 and multi-item scale alpha levels of .65 were achieved for well being and mood, and .55 for behavior, levels that were sustained even after stratification by ADL and cognition. The Changes in Health, End-stage disease and Symptoms and Signs (CHESS) index, a summary measure of frailty was highly predictive of one year survival.</p> <p>Conclusion</p> <p>The MDS demonstrates a reasonable level of consistency both in terms of how well MDS diagnoses correspond to hospital discharge diagnoses and in terms of the internal consistency of functioning and behavioral items. The level of alpha reliability and validity demonstrated by the scales suggest that the data can be useful for research and policy analysis. However, while improving, the MDS discharge tracking record should still not be used to indicate Medicare hospitalizations or mortality. It will be important to monitor the performance of the MDS 3.0 with respect to consistency, reliability and validity now that it has replaced version 2.0, using these results as a baseline that should be exceeded.</p

    Insights from Modeling the 3D Structure of New Delhi Metallo-β-Lactamse and Its Binding Interactions with Antibiotic Drugs

    Get PDF
    New Delhi metallo-beta-lactamase (NDM-1) is an enzyme that makes bacteria resistant to a broad range of beta-lactam antibiotic drugs. This is because it can inactivate most beta-lactam antibiotic drugs by hydrolyzing them. For in-depth understanding of the hydrolysis mechanism, the three-dimensional structure of NDM-1 was developed. With such a structural frame, two enzyme-ligand complexes were derived by respectively docking Imipenem and Meropenem (two typical beta-lactam antibiotic drugs) to the NDM-1 receptor. It was revealed from the NDM-1/Imipenem complex that the antibiotic drug was hydrolyzed while sitting in a binding pocket of NDM-1 formed by nine residues. And for the case of NDM-1/Meropenem complex, the antibiotic drug was hydrolyzed in a binding pocket formed by twelve residues. All these constituent residues of the two binding pockets were explicitly defined and graphically labeled. It is anticipated that the findings reported here may provide useful insights for developing new antibiotic drugs to overcome the resistance problem

    Somato-dendritic vasopressin and oxytocin secretion in endocrine and autonomic regulation

    Get PDF
    Somato‐dendritic secretion was first demonstrated over 30 years ago. However, although its existence has become widely accepted, the function of somato‐dendritic secretion is still not completely understood. Hypothalamic magnocellular neurosecretory cells were among the first neuronal phenotypes in which somato‐dendritic secretion was demonstrated and are among the neurones for which the functions of somato‐dendritic secretion are best characterised. These neurones secrete the neuropeptides, vasopressin and oxytocin, in an orthograde manner from their axons in the posterior pituitary gland into the blood circulation to regulate body fluid balance and reproductive physiology. Retrograde somato‐dendritic secretion of vasopressin and oxytocin modulates the activity of the neurones from which they are secreted, as well as the activity of neighbouring populations of neurones, to provide intra‐ and inter‐population signals that coordinate the endocrine and autonomic responses for the control of peripheral physiology. Somato‐dendritic vasopressin and oxytocin have also been proposed to act as hormone‐like signals in the brain. There is some evidence that somato‐dendritic secretion from magnocellular neurosecretory cells modulates the activity of neurones beyond their local environment where there are no vasopressin‐ or oxytocin‐containing axons but, to date, there is no conclusive evidence for, or against, hormone‐like signalling throughout the brain, although it is difficult to imagine that the levels of vasopressin found throughout the brain could be underpinned by release from relatively sparse axon terminal fields. The generation of data to resolve this issue remains a priority for the field.http://wileyonlinelibrary.com/journal/jne2021-04-17hj2020Immunolog

    Relationship between Tibial conformation, cage size and advancement achieved in TTA procedure

    Get PDF
    Previous studies have suggested that there is a theoretical discrepancy between the cage size and the resultant tibial tuberosity advancement, with the cage size consistently providing less tibial tuberosity advancement than predicted. The purpose of this study was to test and quantify this in clinical cases. The hypothesis was that the advancement of the tibial tuberosity as measured by the widening of the proximal tibia at the tibial tuberosity level after a standard TTA, will be less than the cage sized used, with no particular cage size providing a relative smaller or higher under-advancement, and that the conformation of the proximal tibia will have an influence on the amount of advancement achieved

    Non-Perturbative Renormalization Group for Simple Fluids

    Full text link
    We present a new non perturbative renormalization group for classical simple fluids. The theory is built in the Grand Canonical ensemble and in the framework of two equivalent scalar field theories as well. The exact mapping between the three renormalization flows is established rigorously. In the Grand Canonical ensemble the theory may be seen as an extension of the Hierarchical Reference Theory (L. Reatto and A. Parola, \textit{Adv. Phys.}, \textbf{44}, 211 (1995)) but however does not suffer from its shortcomings at subcritical temperatures. In the framework of a new canonical field theory of liquid state developed in that aim our construction identifies with the effective average action approach developed recently (J. Berges, N. Tetradis, and C. Wetterich, \textit{Phys. Rep.}, \textbf{363} (2002))

    Sequestration of Martian CO2 by mineral carbonation

    Get PDF
    Carbonation is the water-mediated replacement of silicate minerals, such as olivine, by carbonate, and is commonplace in the Earth’s crust. This reaction can remove significant quantities of CO2 from the atmosphere and store it over geological timescales. Here we present the first direct evidence for CO2 sequestration and storage on Mars by mineral carbonation. Electron beam imaging and analysis show that olivine and a plagioclase feldspar-rich mesostasis in the Lafayette meteorite have been replaced by carbonate. The susceptibility of olivine to replacement was enhanced by the presence of smectite veins along which CO2-rich fluids gained access to grain interiors. Lafayette was partially carbonated during the Amazonian, when liquid water was available intermittently and atmospheric CO2 concentrations were close to their present-day values. Earlier in Mars’ history, when the planet had a much thicker atmosphere and an active hydrosphere, carbonation is likely to have been an effective mechanism for sequestration of CO2
    corecore