36,337 research outputs found

    NASA thermionic-conversion program

    Get PDF
    Current out-of-core emphases allow converter material and design freedoms previously prohibited by in-core nucleonic and geometric restrictions. As a result, potential improvements indicate possibilities for severalfold increases in efficiencies. The new TEC-ART program concentrated initially on low-work function collectors and interelectrode-loss reduction and revealed much in a short time. This new emission capability coupled with improved collectors that maintain performance with emitter-vapor deposit accumulations are requisites for efficient, enduring thermionic converters

    Wind Tunnel Test of Low Boom Equivalent Body at Mach 4

    Get PDF
    A body of revolution, representing the equivalent area distribution of a low boom aircraft design cruising at 24,384 meters at a Mach number of 4, was tested to determine whether its theoretical sonic boom characteristics could be experimentally verified. Results indicate that the essential features of the ground signature are well predicted

    Excitation of the molecular gas in the nuclear region of M82

    Get PDF
    We present high-resolution HIFI spectroscopy of the nucleus of the archetypical starburst galaxy M 82. Six ^(12)CO lines, 2 ^(13)CO lines and 4 fine-structure lines have been detected. Besides showing the effects of the overall velocity structure of the nuclear region, the line profiles also indicate the presence of multiple components with different optical depths, temperatures, and densities in the observing beam. The data have been interpreted using a grid of PDR models. It is found that the majority of the molecular gas is in low density (n = 10^(3.5) cm^(-3)) clouds, with column densities of N_H = 10^(21.5) cm^(-2) and a relatively low UV radiation field (G_0 = 10^2). The remaining gas is predominantly found in clouds with higher densities (n = 10^5 cm^(-3)) and radiation fields (G_0 = 10^(2.75)), but somewhat lower column densities (N_H = 10^(21.2) cm^(-2)). The highest J CO lines are dominated by a small (1% relative surface filling) component, with an even higher density (n = 10^6 cm^(-3)) and UV field (G_0 = 10^(3.25)). These results show the strength of multi-component modelling for interpretating the integrated properties of galaxies

    Fatigue testing a plurality of test specimens and method

    Get PDF
    Described is a fatigue testing apparatus for simultaneously subjecting a plurality of material test specimens to cyclical tension loading to determine the fatigue strength of the material. The fatigue testing apparatus includes a pulling head having cylinders defined therein which carry reciprocating pistons. The reciprocation of the pistons is determined by cyclical supplies of pressurized fluid to the cylinders. Piston rods extend from the pistons through the pulling head and are attachable to one end of the test specimens, the other end of the test specimens being attachable to a fixed base, causing test specimens attached between the piston rods and the base to be subjected to cyclical tension loading. Because all the cylinders share a common pressurized fluid supply, the breaking of a test specimen does not substantially affect the pressure of the fluid supplied to the other cylinders nor the tension applied to the other test specimens

    Strong coupling of magnons in a YIG sphere to photons in a planar superconducting resonator in the quantum limit

    Full text link
    We report measurements of a superconducting coplanar waveguide resonator (CPWR) coupled to a sphere of yttrium-iron garnet. The non-uniform CPWR field allows us to excite various magnon modes in the sphere. Mode frequencies and relative coupling strengths are consistent with theory. Strong coupling is observed to several modes even with, on average, less than one excitation present in the CPWR. The time response to square pulses shows oscillations at the mode splitting frequency. These results indicate the feasibility of combining magnonic and planar superconducting quantum devices.Comment: 5 pages, 4 figure

    Sensitivity of Nonrenormalizable Trajectories to the Bare Scale

    Get PDF
    Working in scalar field theory, we consider RG trajectories which correspond to nonrenormalizable theories, in the Wilsonian sense. An interesting question to ask of such trajectories is, given some fixed starting point in parameter space, how the effective action at the effective scale, Lambda, changes as the bare scale (and hence the duration of the flow down to Lambda) is changed. When the effective action satisfies Polchinski's version of the Exact Renormalization Group equation, we prove, directly from the path integral, that the dependence of the effective action on the bare scale, keeping the interaction part of the bare action fixed, is given by an equation of the same form as the Polchinski equation but with a kernel of the opposite sign. We then investigate whether similar equations exist for various generalizations of the Polchinski equation. Using nonperturbative, diagrammatic arguments we find that an action can always be constructed which satisfies the Polchinski-like equation under variation of the bare scale. For the family of flow equations in which the field is renormalized, but the blocking functional is the simplest allowed, this action is essentially identified with the effective action at Lambda = 0. This does not seem to hold for more elaborate generalizations.Comment: v1: 23 pages, 5 figures, v2: intro extended, refs added, published in jphy

    Optimization of field-dependent nonperturbative renormalization group flows

    Full text link
    We investigate the influence of the momentum cutoff function on the field-dependent nonperturbative renormalization group flows for the three-dimensional Ising model, up to the second order of the derivative expansion. We show that, even when dealing with the full functional dependence of the renormalization functions, the accuracy of the critical exponents can be simply optimized, through the principle of minimal sensitivity, which yields ν=0.628\nu = 0.628 and η=0.044\eta = 0.044.Comment: 4 pages, 3 figure

    Study of fuel systems for LH2-fueled subsonic transport aircraft, volume 1

    Get PDF
    Several engine concepts examined to determine a preferred design which most effectively exploits the characteristics of hydrogen fuel in aircraft tanks received major emphasis. Many candidate designs of tank structure and cryogenic insulation systems were evaluated. Designs of all major elements of the aircraft fuel system including pumps, lines, valves, regulators, and heat exchangers received attention. Selected designs of boost pumps to be mounted in the LH2 tanks, and of a high pressure pump to be mounted on the engine were defined. A final design of LH2-fueled transport aircraft was established which incorporates a preferred design of fuel system. That aircraft was then compared with a conventionally fueled counterpart designed to equivalent technology standards

    Timing the Parkes Multibeam Pulsars

    Get PDF
    Measurement of accurate positions, pulse periods and period derivatives is an essential follow-up to any pulsar survey. The procedures being used to obtain timing parameters for the pulsars discovered in the Parkes multibeam pulsar survey are described. Completed solutions have been obtained so far for about 80 pulsars. They show that the survey is preferentially finding pulsars with higher than average surface dipole magnetic fields. Eight pulsars have been shown to be members of binary systems and some of the more interesting results relating to these are presented.Comment: 6 pages, 2 embedded EPS figures, to be published in proceedings of "Pulsar Astronomy - 2000 and Beyond", ASP Conf. Se
    corecore