1,006 research outputs found
Electrodynamics of a Magnet Moving through a Conducting Pipe
The popular demonstration involving a permanent magnet falling through a
conducting pipe is treated as an axially symmetric boundary value problem.
Specifically, Maxwell's equations are solved for an axially symmetric magnet
moving coaxially inside an infinitely long, conducting cylindrical shell of
arbitrary thickness at nonrelativistic speeds. Analytic solutions for the
fields are developed and used to derive the resulting drag force acting on the
magnet in integral form. This treatment represents a significant improvement
over existing models which idealize the problem as a point dipole moving slowly
inside a pipe of negligible thickness. It also provides a rigorous study of
eddy currents under a broad range of conditions, and can be used for precision
magnetic braking applications. The case of a uniformly magnetized cylindrical
magnet is considered in detail, and a comprehensive analytical and numerical
study of the properties of the drag force is presented for this geometry.
Various limiting cases of interest involving the shape and speed of the magnet
and the full range of conductivity and magnetic behavior of the pipe material
are investigated and corresponding asymptotic formulas are developed.Comment: 20 pages, 3 figures; computer program posted to
http://www.csus.edu/indiv/p/partovimh/magpipedrag.nb Submitted to the
Canadian Journal of Physic
Cardiovascular disease and air pollution in Scotland: no association or insufficient data and study design?
<p><b>Background:</b>
Coronary heart disease and stroke are leading causes of mortality and ill health in Scotland, and clear associations have been found in previous studies between air pollution and cardiovascular disease. This study aimed to use routinely available data to examine whether there is any evidence of an association between short-term exposure to particulate matter (measured as PM10, particles less than 10 micrograms per cubic metre) and hospital admissions due to cardiovascular disease, in the two largest cities in Scotland during the years 2000 to 2006.</p>
<p><b>Methods:</b> The study utilised an ecological time series design, and the analysis was based on overdispersed Poisson log-linear models.</p>
<p><b>Results:</b> No consistent associations were found between PM10 concentrations and cardiovascular hospital admissions in either of the cities studied, as all of the estimated relative risks were close to one, and all but one of the associated 95% confidence intervals contained the null risk of one.</p>
<p><b>Conclusions:</b> This study suggests that in small cities, where air quality is relatively good, then either PM10 concentrations have no effect on cardiovascular ill health, or that the routinely available data and the corresponding study design are not sufficient to detect an association.</p>
Extensions of tempered representations
Let be irreducible tempered representations of an affine Hecke
algebra H with positive parameters. We compute the higher extension groups
explicitly in terms of the representations of analytic
R-groups corresponding to and . The result has immediate
applications to the computation of the Euler-Poincar\'e pairing ,
the alternating sum of the dimensions of the Ext-groups. The resulting formula
for is equal to Arthur's formula for the elliptic pairing of
tempered characters in the setting of reductive p-adic groups. Our proof
applies equally well to affine Hecke algebras and to reductive groups over
non-archimedean local fields of arbitrary characteristic. This sheds new light
on the formula of Arthur and gives a new proof of Kazhdan's orthogonality
conjecture for the Euler-Poincar\'e pairing of admissible characters.Comment: This paper grew out of "A formula of Arthur and affine Hecke
algebras" (arXiv:1011.0679). In the second version some minor points were
improve
Effective ecosystem monitoring requires a multi-scaled approach
Ecosystem monitoring is fundamental to our understanding of how ecosystem change is impacting our natural resources and is vital for developing evidence-based policy and management. However, the different types of ecosystem monitoring, along with their recommended applications, are often poorly understood and contentious. Varying definitions and strict adherence to a specific monitoring type can inhibit effective ecosystem monitoring, leading to poor program development, implementation and outcomes. In an effort to develop a more consistent and clear understanding of ecosystem monitoring programs, we here review the main types of monitoring and recommend the widespread adoption of three classifications of monitoring, namely, targeted, surveillance and landscape monitoring. Landscape monitoring is conducted over large areas, provides spatial data, and enables questions relating to where and when ecosystem change is occurring to be addressed. Surveillance monitoring uses standardised field methods to inform on what is changing in our environments and the direction and magnitude of that change, whilst targeted monitoring is designed around testable hypotheses over defined areas and is the best approach for determining the causes of ecosystem change. The classification system is flexible and can incorporate different interests, objectives, targets and characteristics as well as different spatial scales and temporal frequencies, while also providing valuable structure and consistency across distinct ecosystem monitoring programs. To support our argument, we examine the ability of each monitoring type to inform on six key types of questions that are routinely posed for ecosystem monitoring programs, such as where and when change is occurring, what is the magnitude of change, and how can the change be managed? As we demonstrate, each type of ecosystem monitoring has its own strengths and weaknesses, which should be carefully considered relative to the desired results. Using this scheme, scientists and land managers can design programs best suited to their needs. Finally, we assert that for our most serious environmental challenges, it is essential that we include information from each of these monitoring scales to inform on all facets of ecosystem change, and this is best achieved through close collaboration between the scales. With a renewed understanding of the importance of each monitoring type, along with greater commitment to monitor cooperatively, we will be well placed to address some of our greatest environmental challenges
The Magnetic Field of the Solar Corona from Pulsar Observations
We present a novel experiment with the capacity to independently measure both
the electron density and the magnetic field of the solar corona. We achieve
this through measurement of the excess Faraday rotation due to propagation of
the polarised emission from a number of pulsars through the magnetic field of
the solar corona. This method yields independent measures of the integrated
electron density, via dispersion of the pulsed signal and the magnetic field,
via the amount of Faraday rotation. In principle this allows the determination
of the integrated magnetic field through the solar corona along many lines of
sight without any assumptions regarding the electron density distribution. We
present a detection of an increase in the rotation measure of the pulsar
J18012304 of approximately 160 \rad at an elongation of 0.95 from
the centre of the solar disk. This corresponds to a lower limit of the magnetic
field strength along this line of sight of . The lack of
precision in the integrated electron density measurement restricts this result
to a limit, but application of coronal plasma models can further constrain this
to approximately 20mG, along a path passing 2.5 solar radii from the solar
limb. Which is consistent with predictions obtained using extensions to the
Source Surface models published by Wilcox Solar ObservatoryComment: 16 pages, 4 figures (1 colour): Submitted to Solar Physic
Chiral phase boundary of QCD at finite temperature
We analyze the approach to chiral symmetry breaking in QCD at finite
temperature, using the functional renormalization group. We compute the running
gauge coupling in QCD for all temperatures and scales within a simple truncated
renormalization flow. At finite temperature, the coupling is governed by a
fixed point of the 3-dimensional theory for scales smaller than the
corresponding temperature. Chiral symmetry breaking is approached if the
running coupling drives the quark sector to criticality. We quantitatively
determine the phase boundary in the plane of temperature and number of flavors
and find good agreement with lattice results. As a generic and testable
prediction, we observe that our underlying IR fixed-point scenario leaves its
imprint in the shape of the phase boundary near the critical flavor number:
here, the scaling of the critical temperature is determined by the
zero-temperature IR critical exponent of the running coupling.Comment: 39 pages, 8 figure
On the Progenitors of Core-Collapse Supernovae
Theory holds that a star born with an initial mass between about 8 and 140
times the mass of the Sun will end its life through the catastrophic
gravitational collapse of its iron core to a neutron star or black hole. This
core collapse process is thought to usually be accompanied by the ejection of
the star's envelope as a supernova. This established theory is now being tested
observationally, with over three dozen core-collapse supernovae having had the
properties of their progenitor stars directly measured through the examination
of high-resolution images taken prior to the explosion. Here I review what has
been learned from these studies and briefly examine the potential impact on
stellar evolution theory, the existence of "failed supernovae", and our
understanding of the core-collapse explosion mechanism.Comment: 7 Pages, invited review accepted for publication by Astrophysics and
Space Science (special HEDLA 2010 issue
Generic Business Model Types for Enterprise Mashup Intermediaries
The huge demand for situational and ad-hoc applications desired by the mass of business end users led to a new kind of Web applications, well-known as Enterprise Mashups. Users with no or limited programming skills are empowered to leverage in a collaborative manner existing Mashup components by combining and reusing company internal and external resources within minutes to new value added applications. Thereby, Enterprise Mashup environments interact as intermediaries to match the supply of providers and demand of consumers. By following the design science approach, we propose an interaction phase model artefact based on market transaction phases to structure required intermediary features. By means of five case studies, we demonstrate the application of the designed model and identify three generic business model types for Enterprise Mashups intermediaries (directory, broker, and marketplace). So far, intermediaries following a real marketplace business model don’t exist in context of Enterprise Mashups and require further research for this emerging paradigm
New fossil remains of Homo naledi from the Lesedi Chamber, South Africa
The Rising Star cave system has produced abundant fossil hominin remains within the
Dinaledi Chamber, representing a minimum of 15 individuals attributed to Homo naledi. Further
exploration led to the discovery of hominin material, now comprising 131 hominin specimens,
within a second chamber, the Lesedi Chamber. The Lesedi Chamber is far separated from the
Dinaledi Chamber within the Rising Star cave system, and represents a second depositional context
for hominin remains. In each of three collection areas within the Lesedi Chamber, diagnostic
skeletal material allows a clear attribution to H. naledi. Both adult and immature material is present.
The hominin remains represent at least three individuals based upon duplication of elements, but
more individuals are likely present based upon the spatial context. The most significant specimen is
the near-complete cranium of a large individual, designated LES1, with an endocranial volume of
approximately 610 ml and associated postcranial remains. The Lesedi Chamber skeletal sample
extends our knowledge of the morphology and variation of H. naledi, and evidence of H. naledi
from both recovery localities shows a consistent pattern of differentiation from other hominin
species.SP201
- …