27,716 research outputs found

    Electroconvection in a Suspended Fluid Film: A Linear Stability Analysis

    Full text link
    A suspended fluid film with two free surfaces convects when a sufficiently large voltage is applied across it. We present a linear stability analysis for this system. The forces driving convection are due to the interaction of the applied electric field with space charge which develops near the free surfaces. Our analysis is similar to that for the two-dimensional B\'enard problem, but with important differences due to coupling between the charge distribution and the field. We find the neutral stability boundary of a dimensionless control parameter R{\cal R} as a function of the dimensionless wave number κ{\kappa}. R{\cal R}, which is proportional to the square of the applied voltage, is analogous to the Rayleigh number. The critical values Rc{{\cal R}_c} and κc{\kappa_c} are found from the minimum of the stability boundary, and its curvature at the minimum gives the correlation length ξ0{\xi_0}. The characteristic time scale τ0{\tau_0}, which depends on a second dimensionless parameter P{\cal P}, analogous to the Prandtl number, is determined from the linear growth rate near onset. ξ0{\xi_0} and τ0{\tau_0} are coefficients in the Ginzburg-Landau amplitude equation which describes the flow pattern near onset in this system. We compare our results to recent experiments.Comment: 36 pages, 7 included eps figures, submitted to Phys Rev E. For more info, see http://mobydick.physics.utoronto.ca

    Annular electroconvection with shear

    Full text link
    We report experiments on convection driven by a radial electrical force in suspended annular smectic A liquid crystal films. In the absence of an externally imposed azimuthal shear, a stationary one-dimensional (1D) pattern consisting of symmetric vortex pairs is formed via a supercritical transition at the onset of convection. Shearing reduces the symmetries of the base state and produces a traveling 1D pattern whose basic periodic unit is a pair of asymmetric vortices. For a sufficiently large shear, the primary bifurcation changes from supercritical to subcritical. We describe measurements of the resulting hysteresis as a function of the shear at radius ratio η0.8\eta \sim 0.8. This simple pattern forming system has an unusual combination of symmetries and control parameters and should be amenable to quantitative theoretical analysis.Comment: 12 preprint pages, 3 figures in 2 parts each. For more info, see http://mobydick.physics.utoronto.c

    A genome-wide association study suggests an association of Chr8p21.3 (GFRA2) with diabetic neuropathic pain

    Get PDF
    BACKGROUND: Neuropathic pain, caused by a lesion or a disease affecting the somatosensory system, is one of the most common complications in diabetic patients. The purpose of this study is to identify genetic factors contributing to this type of pain in a general diabetic population. METHOD: We accessed the Genetics of Diabetes Audit and Research Tayside (GoDARTS) datasets that contain prescription information and monofilament test results for 9439 diabetic patients, among which 6927 diabetic individuals were genotyped by Affymetrix SNP6.0 or Illumina OmniExpress chips. Cases of neuropathic pain were defined as diabetic patients with a prescription history of at least one of five drugs specifically indicated for the treatment of neuropathic pain and in whom monofilament test result was positive for sensory neuropathy in at least one foot. Controls were individuals who did not have a record of receiving any opioid analgesics. Imputation of non‐genotyped SNPs was performed by IMPUTE2, with reference files from 1000 Genomes Phase I datasets. RESULTS: After data cleaning and relevant exclusions, imputed genotypes of 572 diabetic neuropathic pain cases and 2491 diabetic controls were used in the Fisher's exact test. We identified a cluster in the Chr8p21.3, next to GFRA2 with a lowest p‐value of 1.77 × 10(−7) at rs17428041. The narrow‐sense heritability of this phenotype was 11.00%. CONCLUSION: This genome‐wide association study on diabetic neuropathic pain suggests new evidence for the involvement of variants near GFRA2 with the disorder, which needs to be verified in an independent cohort and at the molecular level

    Wormhole Cosmology and the Horizon Problem

    Full text link
    We construct an explicit class of dynamic lorentzian wormholes connecting Friedmann-Robertson-Walker (FRW) spacetimes. These wormholes can allow two-way transmission of signals between spatially separated regions of spacetime and could permit such regions to come into thermal contact. The cosmology of a network of early Universe wormholes is discussed.Comment: 13 pages, in RevTe
    corecore