13 research outputs found

    Genetics of myocardial interstitial fibrosis in the human heart and association with disease

    Get PDF
    Myocardial interstitial fibrosis is associated with cardiovascular disease and adverse prognosis. Here, to investigate the biological pathways that underlie fibrosis in the human heart, we developed a machine learning model to measure native myocardial T1 time, a marker of myocardial fibrosis, in 41,505 UK Biobank participants who underwent cardiac magnetic resonance imaging. Greater T1 time was associated with diabetes mellitus, renal disease, aortic stenosis, cardiomyopathy, heart failure, atrial fibrillation, conduction disease and rheumatoid arthritis. Genome-wide association analysis identified 11 independent loci associated with T1 time. The identified loci implicated genes involved in glucose transport (SLC2A12), iron homeostasis (HFE, TMPRSS6), tissue repair (ADAMTSL1, VEGFC), oxidative stress (SOD2), cardiac hypertrophy (MYH7B) and calcium signaling (CAMK2D). Using a transforming growth factor β1-mediated cardiac fibroblast activation assay, we found that 9 of the 11 loci consisted of genes that exhibited temporal changes in expression or open chromatin conformation supporting their biological relevance to myofibroblast cell state acquisition. By harnessing machine learning to perform large-scale quantification of myocardial interstitial fibrosis using cardiac imaging, we validate associations between cardiac fibrosis and disease, and identify new biologically relevant pathways underlying fibrosis.</p

    Adjusting for common variant polygenic scores improves yield in rare variant association analyses

    No full text
    With the emergence of large-scale sequencing data, methods for improving power in rare variant association tests are needed. Here we show that adjusting for common variant polygenic scores improves yield in gene-based rare variant association tests across 65 quantitative traits in the UK Biobank (up to 20% increase at α = 2.6 × 10−6), without marked increases in false-positive rates or genomic inflation. Benefits were seen for various models, with the largest improvements seen for efficient sparse mixed-effects models. Our results illustrate how polygenic score adjustment can efficiently improve power in rare variant association discovery

    LMNA Variants and Risk of Adult-Onset Cardiac Disease

    No full text
    Background: Genetic variants in LMNA may cause cardiac disease, but population-level contributions of variants to cardiac disease burden are not well-characterized. Objectives: We sought to determine the frequency and contribution of rare LMNA variants to cardiomyopathy and arrhythmia risk among ambulatory adults. Methods: We included 185,990 UK Biobank participants with whole-exome sequencing. We annotated rare loss-of-function and missense LMNA variants for functional effect using 30 in silico prediction tools. We assigned a predicted functional effect weight to each variant and calculated a score for each carrier. We tested associations between the LMNA score and arrhythmia (atrial fibrillation, bradyarrhythmia, ventricular arrhythmia) or cardiomyopathy outcomes (dilated cardiomyopathy and heart failure). We also examined associations for variants located upstream vs downstream of the nuclear localization signal. Results: Overall, 1,167 (0.63%) participants carried an LMNA variant and 15,079 (8.11%) had an arrhythmia or cardiomyopathy event during a median follow-up of 10.9 years. The LMNA score was associated with arrhythmia or cardiomyopathy (OR: 2.21; P < 0.001) and the association was more significant when restricted to variants upstream of the nuclear localization signal (OR: 5.05; P < 0.001). The incidence rate of arrhythmia or cardiomyopathy was 8.43 per 1,000 person-years (95% CI: 6.73-10.12 per 1,000 person-years) among LMNA variant carriers and 6.38 per 1,000 person-years (95% CI: 6.27-6.50 per 1,000 person-years) among noncarriers. Only 3 (1.2%) of the variants were reported as pathogenic in ClinVar. Conclusions: Middle-aged adult carriers of rare missense or loss-of-function LMNA variants are at increased risk for arrhythmia and cardiomyopathy

    Monogenic and Polygenic Contributions to QTc Prolongation in the Population

    No full text
    Background: Rare sequence variation in genes underlying cardiac repolarization and common polygenic variation influence QT interval duration. However, current clinical genetic testing of individuals with unexplained QT prolongation is restricted to examination of monogenic rare variants. The recent emergence of large-scale biorepositories with sequence data enables examination of the joint contribution of rare and common variations to the QT interval in the population. Methods: We performed a genome-wide association study of the QTc in 84 630 UK Biobank participants and created a polygenic risk score (PRS). Among 26 976 participants with whole-genome sequencing and ECG data in the TOPMed (Trans-Omics for Precision Medicine) program, we identified 160 carriers of putative pathogenic rare variants in 10 genes known to be associated with the QT interval. We examined QTc associations with the PRS and with rare variants in TOPMed. Results: Fifty-four independent loci were identified by genome-wide association study in the UK Biobank. Twenty-one loci were novel, of which 12 were replicated in TOPMed. The PRS composed of 1 110 494 common variants was significantly associated with the QTc in TOPMed (ΔQTc/decile of PRS=1.4 ms [95% CI, 1.3 to 1.5]; P=1.1×10-196). Carriers of putative pathogenic rare variants had longer QTc than noncarriers (ΔQTc=10.9 ms [95% CI, 7.4 to 14.4]). Of individuals with QTc>480 ms, 23.7% carried either a monogenic rare variant or had a PRS in the top decile (3.4% monogenic, 21% top decile of PRS). Conclusions: QTc duration in the population is influenced by both rare variants in genes underlying cardiac repolarization and polygenic risk, with a sizeable contribution from polygenic risk. Comprehensive assessment of the genetic determinants of QTc prolongation includes incorporation of both polygenic and monogenic risk

    Endophenotype effect sizes support variant pathogenicity in monogenic disease susceptibility genes

    No full text
    Accurate and efficient classification of variant pathogenicity is critical for research and clinical care. Using data from three large studies, we demonstrate that population-based associations between rare variants and quantitative endophenotypes for three monogenic diseases (low-density-lipoprotein cholesterol for familial hypercholesterolemia, electrocardiographic QTc interval for long QT syndrome, and glycosylated hemoglobin for maturity-onset diabetes of the young) provide evidence for variant pathogenicity. Effect sizes are associated with pathogenic ClinVar assertions (P < 0.001 for each trait) and discriminate pathogenic from non-pathogenic variants (area under the curve 0.82-0.84 across endophenotypes). An effect size threshold of ≥ 0.5 times the endophenotype standard deviation nominates up to 35% of rare variants of uncertain significance or not in ClinVar in disease susceptibility genes with pathogenic potential. We propose that variant associations with quantitative endophenotypes for monogenic diseases can provide evidence supporting pathogenicity

    Endophenotype effect sizes support variant pathogenicity in monogenic disease susceptibility genes.

    No full text
    Accurate and efficient classification of variant pathogenicity is critical for research and clinical care. Using data from three large studies, we demonstrate that population-based associations between rare variants and quantitative endophenotypes for three monogenic diseases (low-density-lipoprotein cholesterol for familial hypercholesterolemia, electrocardiographic QTc interval for long QT syndrome, and glycosylated hemoglobin for maturity-onset diabetes of the young) provide evidence for variant pathogenicity. Effect sizes are associated with pathogenic ClinVar assertions (P < 0.001 for each trait) and discriminate pathogenic from non-pathogenic variants (area under the curve 0.82-0.84 across endophenotypes). An effect size threshold of ≥ 0.5 times the endophenotype standard deviation nominates up to 35% of rare variants of uncertain significance or not in ClinVar in disease susceptibility genes with pathogenic potential. We propose that variant associations with quantitative endophenotypes for monogenic diseases can provide evidence supporting pathogenicity
    corecore