108 research outputs found
Three Cs of Translating EvidenceâBased Programs for Youth and Families to Practice Settings
Despite the growing number of evidenceâbased programs (EBPs) for youth and families, few are wellâintegrated in service systems or widely adopted by communities. One set of challenges to widespread adoption of EBPs relates to the transfer of programs from research and development to practice settings. This is often because program developers have limited guidance on how to prepare their programs for broad dissemination in practice settings. We describe Three Cs of Translation, which are key areas that are essential for developers to translate their EBPs from research to practice settings: (1) Communicate the underlying theory in terms easily understandable to end users, (2) Clarify fidelity and flexibility, and (3) Codify implementation lessons and examples. Program developers are in the best position to describe their interventions, to define intervention core components, to clarify fidelity and flexibility, and to codify implementation lessons from intervention studies. We note several advantages for developers to apply the Three Cs prior to intervention dissemination and provide specific recommendations for translation. © 2015 Wiley Periodicals, Inc.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/113697/1/cad20111.pd
N-representability and stationarity in time-dependent density functional theory
To construct an N-representable time-dependent density-functional theory, a
generalization to the time domain of the Levy-Lieb (LL) constrained search
algorithm is required. That the action is only stationary in the Dirac-Frenkel
variational principle eliminates the possibility of basing the search on the
action itself. Instead, we use the norm of the partial functional derivative of
the action in the Hilbert space of the wave functions in place of the energy of
the LL search. The electron densities entering the formalism are
-representable, and the resulting universal action functional has a unique
stationary point in the density at that corresponding to the solution of the
Schr\"{o}dinger equation. The original Runge-Gross (RG) formulation is subsumed
within the new formalism. Concerns in the literature about the meaning of the
functional derivatives and the internal consistency of the RG formulation are
allayed by clarifying the nature of the functional derivatives entering the
formalism.Comment: 9 pages, 0 figures, Phys. Rev. A accepted. Introduction was expanded,
subsections reorganized, appendix and new references adde
Towards a first principles description of phonons in NiPt disordered alloys: the role of relaxation
Using a combination of density-functional perturbation theory and the
itinerant coherent potential approximation, we study the effects of atomic
relaxation on the inelastic incoherent neutron scattering cross sections of
disordered NiPt alloys. We build on previous work, where
empirical force constants were adjusted {\it ad hoc} to agree with experiment.
After first relaxing all structural parameters within the local-density
approximation for ordered NiPt compounds, density-functional perturbation
theory is then used to compute phonon spectra, densities of states, and the
force constants. The resulting nearest-neighbor force constants are first
compared to those of other ordered structures of different stoichiometry, and
then used to generate the inelastic scattering cross sections within the
itinerant coherent potential approximation. We find that structural relaxation
substantially affects the computed force constants and resulting inelastic
cross sections, and that the effect is much more pronounced in random alloys
than in ordered alloys.Comment: 8 pages, 3 eps figures, uses revtex
Lattice dielectric response of CdCu{3}Ti{4}O{12} and of CaCu{3}Ti{4}O{12} from first principles
Structural, vibrational, and lattice dielectric properties of
CdCu{3}Ti{4}O{12} are studied using density-functional theory within the local
spin-density approximation, and the results are compared with those computed
previously for CaCu{3}Ti{4}O{12}. Replacing Ca with Cd is found to leave many
calculated quantities largely unaltered, although significant differences do
emerge in zone-center optical phonon frequencies and mode effective charges.
The computed phonon frequencies of CdCu{3}Ti{4}O{12} are found to be in
excellent agreement with experiment, and the computed lattice contribution to
the intrinsic static dielectric constant (~60) also agrees exceptionally well
with a recent optical absorption experiment. These results provide further
support for a picture in which the lattice dielectric response is essentially
conventional, suggesting an extrinsic origin for the anomalous low-frequency
dielectric response recently observed in both materials.Comment: 5 pages; uses REVTEX macros. Also available at
http://www.physics.rutgers.edu/~dhv/preprints/lh_cdct/index.htm
Phonons in random alloys: the itinerant coherent-potential approximation
We present the itinerant coherent-potential approximation(ICPA), an analytic,
translationally invariant and tractable form of augmented-space-based,
multiple-scattering theory in a single-site approximation for harmonic phonons
in realistic random binary alloys with mass and force-constant disorder.
We provide expressions for quantities needed for comparison with experimental
structure factors such as partial and average spectral functions and derive the
sum rules associated with them. Numerical results are presented for Ni_{55}
Pd_{45} and Ni_{50} Pt_{50} alloys which serve as test cases, the former for
weak force-constant disorder and the latter for strong. We present results on
dispersion curves and disorder-induced widths. Direct comparisons with the
single-site coherent potential approximation(CPA) and experiment are made which
provide insight into the physics of force-constant changes in random alloys.
The CPA accounts well for the weak force-constant disorder case but fails for
strong force-constant disorder where the ICPA succeeds.Comment: 19 pages, 12 eps figures, uses RevTex
Beitrag zum Problem der heterosynaptischen Facilitation in Aplysia californica
1. Heterosynaptic facilitation (H.S.F.) of single neurons in the central nervous system of Aplysia can be repeated virtually indefinitely, provided sufficient time is allowed for recovery between the trials.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47439/1/424_2004_Article_BF00362956.pd
A simplified microwave-based motion detector for home cage activity monitoring in mice
Background: Locomotor activity of rodents is an important readout to assess well-being and physical health, and is pivotal for behavioral phenotyping. Measuring homecage-activity with standard and cost-effective optical methods in mice has become difficult, as modern housing conditions (e.g. individually ventilated cages, cage enrichment) do not allow constant, unobstructed, visual access. Resolving this issue either makes greater investments necessary, especially if several experiments will be run in parallel, or is at the animals' expense. The purpose of this study is to provide an easy, yet satisfying solution for the behavioral biologist at novice makers level. Results: We show the design, construction and validation of a simplified, low-cost, radar-based motion detector for home cage activity monitoring in mice. In addition we demonstrate that mice which have been selectively bred for low levels of anxiety-related behavior (LAB) have deficits in circadian photoentrainment compared to CD1 control animals. Conclusion: In this study we have demonstrated that our proposed low-cost microwave-based motion detector is well-suited for the study of circadian rhythms in mice
- âŠ