450 research outputs found

    Nanometer-spaced platinum electrodes with calibrated separation

    Full text link
    We have fabricated pairs of platinum electrodes with separation between 20 and 3.5 nm. Our technique combines electron beam lithography and chemical electrodeposition. We show that the measurement of the conductance between the two electrodes through the electrolyte provides an accurate and reproducible way to control their separation. We have tested the robustness of the electrodes by applying large voltages across them and by using them to measure the transport properties of Au nano-clusters. Our results show that the technique reliably produces metallic electrodes with a separation that bridges the minimum scale accessible by electron beam lithography with the atomic scale.Comment: 4 pages, 4 figure

    Current saturation and Coulomb interactions in organic single-crystal transistors

    Full text link
    Electronic transport through rubrene single-crystal field effect transistors (FETs) is investigated experimentally in the high carrier density regime (n ~ 0.1 carrier/molecule). In this regime, we find that the current does not increase linearly with the density of charge carriers, and tends to saturate. At the same time, the activation energy for transport unexpectedly increases with increasing n. We perform a theoretical analysis in terms of a well-defined microscopic model for interacting Frohlich polarons, that quantitatively accounts for our experimental observations. This work is particularly significant for our understanding of electronic transport through organic FETs.Comment: Extended version with 1 additional figure and an appendix explaining the consistency of the theoretical calculatio

    Quantitative analysis of electronic transport through weakly-coupled metal/organic interfaces

    Full text link
    Using single-crystal transistors, we have performed a systematic experimental study of electronic transport through oxidized copper/rubrene interfaces as a function of temperature and bias. We find that the measurements can be reproduced quantitatively in terms of the thermionic emission theory for Schottky diodes, if the effect of the bias-induced barrier lowering is included. Our analysis emphasizes the role of the coupling between metal and molecules, which in our devices is weak due to the presence of an oxide layer at the surface of the copper electrodes.Comment: 4 pages, 3 figure

    Aharonov-Bohm effect and broken valley-degeneracy in graphene rings

    Full text link
    We analyze theoretically the electronic properties of Aharonov-Bohm rings made of graphene. We show that the combined effect of the ring confinement and applied magnetic flux offers a controllable way to lift the orbital degeneracy originating from the two valleys, even in the absence of intervalley scattering. The phenomenon has observable consequences on the persistent current circulating around the closed graphene ring, as well as on the ring conductance. We explicitly confirm this prediction analytically for a circular ring with a smooth boundary modelled by a space-dependent mass term in the Dirac equation. This model describes rings with zero or weak intervalley scattering so that the valley isospin is a good quantum number. The tunable breaking of the valley degeneracy by the flux allows for the controlled manipulation of valley isospins. We compare our analytical model to another type of ring with strong intervalley scattering. For the latter case, we study a ring of hexagonal form with lattice-terminated zigzag edges numerically. We find for the hexagonal ring that the orbital degeneracy can still be controlled via the flux, similar to the ring with the mass confinement.Comment: 7 pages, 7 figures, replaced with considerably extended new versio

    Shot Noise in Ballistic Graphene

    Get PDF
    We have investigated shot noise in graphene field effect devices in the temperature range of 4.2--30 K at low frequency (ff = 600--850 MHz). We find that for our graphene samples with large width over length ratio W/LW/L, the Fano factor F\mathfrak{F} reaches a maximum F∼\mathfrak{F} \sim 1/3 at the Dirac point and that it decreases strongly with increasing charge density. For smaller W/LW/L, the Fano factor at Dirac point is significantly lower. Our results are in good agreement with the theory describing that transport at the Dirac point in clean graphene arises from evanescent electronic states.Comment: Phys. Rev. Lett. 100, 196802 (2008

    Two-component model of a spin-polarized transport

    Full text link
    Effect of the spin-involved interaction of electrons with impurity atoms or defects to the transport properties of a two-dimensional electron gas is described by using a simplifying two-component model. Components representing spin-up and spin-down states are supposed to be coupled at a discrete set of points within a conduction channel. The used limit of the short-range interaction allows to solve the relevant scattering problem exactly. By varying the model parameters different transport regimes of two-terminal devices with ferromagnetic contacts can be described. In a quasi-ballistic regime the resulting difference between conductances for the parallel and antiparallel orientation of the contact magnetization changes its sign as a function of the length of the conduction channel if appropriate model parameters are chosen. The effect is in agreement with recent experimental observations.Comment: 4 RevTeX pages with 4 figure

    Quantitative Study of Magnetotransport through a (Ga,Mn)As Single Ferromagnetic Domain

    Full text link
    We have performed a systematic investigation of the longitudinal and transverse magnetoresistance of a single ferromagnetic domain in (Ga,Mn)As. We find that, by taking into account the intrinsic dependence of the resistivity on the magnetic induction, an excellent agreement between experimental results and theoretical expectations is obtained. Our findings provide a detailed and fully quantitative validation of the theoretical description of magnetotransport through a single ferromagnetic domain. Our analysis furthermore indicates the relevance of magneto-impurity scattering as a mechanism for magnetoresistance in (Ga,Mn)As.Comment: 5 pages, 4 figures; v2: missing references included, figures recompressed to improve readabilit

    The Gerasimov-Drell-Hearn Sum Rule and the Spin Structure of the Nucleon

    Full text link
    The Gerasimov-Drell-Hearn sum rule is one of several dispersive sum rules that connect the Compton scattering amplitudes to the inclusive photoproduction cross sections of the target under investigation. Being based on such universal principles as causality, unitarity, and gauge invariance, these sum rules provide a unique testing ground to study the internal degrees of freedom that hold the system together. The present article reviews these sum rules for the spin-dependent cross sections of the nucleon by presenting an overview of recent experiments and theoretical approaches. The generalization from real to virtual photons provides a microscope of variable resolution: At small virtuality of the photon, the data sample information about the long range phenomena, which are described by effective degrees of freedom (Goldstone bosons and collective resonances), whereas the primary degrees of freedom (quarks and gluons) become visible at the larger virtualities. Through a rich body of new data and several theoretical developments, a unified picture of virtual Compton scattering emerges, which ranges from coherent to incoherent processes, and from the generalized spin polarizabilities on the low-energy side to higher twist effects in deep inelastic lepton scattering.Comment: 32 pages, 19 figures, review articl

    Anti-Kaon Induced Reactions on the Nucleon

    Get PDF
    Using a previously established effective Lagrangian model we describe anti-kaon induced reactions on the nucleon. The dominantly contributing channels in the cm-energy region from threshold up to 1.72 GeV are included (K N, \pi \Sigma, \pi \Lambda). We solve the Bethe-Salpeter equation in an unitary KK-matrix approximation.Comment: 21 pages, 13 figures, minor typos corrected, accepted for publication in Phys. Rev.

    Nonadiabatic noncyclic geometric phase and ensemble average spectrum of conductance in disordered mesoscopic rings with spin-orbit coupling

    Get PDF
    We generalize Yang's theory from the U(1) gauge field to the non-Abelian U(1)×SU(2)spinU(1)\times SU(2)_{spin} gauge field. Based on this generalization and taking into account the geometric Pancharatnam phase as well as an effective Aharonov-Bohm (AB) phase in nonadiabatic noncyclic transport, we calculate the ensemble average Fourier spectrum of the conductance in disordered mesoscopic rings connected to two leads. Our theory can explain the experimental results reported by Morpurgo {\sl et al.} [Phys. Rev. Lett. {\bf 80}, 1050 (1998)] satisfactorily. In particular, we clarify that the experimentally observed splitting, as well as some structure on the sides of the main peak in the ensemble average Fourier spectrum, stem from the nonadiabatic noncyclic Pancharatnam phase and the effective AB phase, both being dependent on spin-orbit coupling.Comment: 5 pages, 1 figure. A slightly revised version, and re-submitted to PRL on Mar. 14, 200
    • …
    corecore