5,734 research outputs found
Shape transformations in rotating ferrofluid drops
Floating drops of magnetic fluid can be brought into rotation by applying a
rotating magnetic field. We report theoretical and experimental results on the
transition from a spheroid equilibrium shape to non-axissymmetrical three-axes
ellipsoids at certain values of the external field strength. The transitions
are continuous for small values of the magnetic susceptibility and show
hysteresis for larger ones. In the non-axissymmetric shape the rotational
motion of the drop consists of a vortical flow inside the drop combined with a
slow rotation of the shape. Nonlinear magnetization laws are crucial to obtain
quantitative agreement between theory and experiment.Comment: 4 pages, 3 figure
Continuum Limits of ``Induced QCD": Lessons of the Gaussian Model at d=1 and Beyond
We analyze the scalar field sector of the Kazakov--Migdal model of induced
QCD. We present a detailed description of the simplest one dimensional
{()} model which supports the hypothesis of wide applicability of the
mean--field approximation for the scalar fields and the existence of critical
behaviour in the model when the scalar action is Gaussian. Despite the
ocurrence of various non--trivial types of critical behaviour in the
model as , only the conventional large- limit is
relevant for its {\it continuum} limit. We also give a mean--field analysis of
the model in {\it any} and show that a saddle point always exists in
the region . In it exhibits critical behaviour as
. However when there is no critical
behaviour unless non--Gaussian terms are added to the scalar field action. We
argue that similar behaviour should occur for any finite thus providing a
simple explanation of a recent result of D. Gross. We show that critical
behaviour at and can be obtained by adding a
term to the scalar potential. This is equivalent to a local
modification of the integration measure in the original Kazakov--Migdal model.
Experience from previous studies of the Generalized Kontsevich Model implies
that, unlike the inclusion of higher powers in the potential, this minor
modification should not substantially alter the behaviour of the Gaussian
model.Comment: 31 page
New and Old Results in Resultant Theory
Resultants are getting increasingly important in modern theoretical physics:
they appear whenever one deals with non-linear (polynomial) equations, with
non-quadratic forms or with non-Gaussian integrals. Being a subject of more
than three-hundred-year research, resultants are of course rather well studied:
a lot of explicit formulas, beautiful properties and intriguing relationships
are known in this field. We present a brief overview of these results,
including both recent and already classical. Emphasis is made on explicit
formulas for resultants, which could be practically useful in a future physics
research.Comment: 50 pages, 15 figure
On non existence of tokamak equilibria with purely poloidal flow
It is proved that irrespective of compressibility tokamak steady states with
purely poloidal mass flow can not exist in the framework of either
magnetohydrodynamics (MHD) or Hall MHD models. Non-existence persists within
single fluid plasma models with pressure anisotropy and incompressible flows.Comment: The conclusion reported in the last sentence of the first paragraph
of Sec. V in the version of the paper published in Physics of Plasmas is
incorrect. The correct conclusion is given here (15 pages
Ultraviolet Behavior of the Gluon Propagator in the Maximal Abelian Gauge
The ultraviolet asymptotic behavior of the gluon propagator is evaluated in
the maximal Abelian gauge in the SU(2) gauge theory on the basis of the
renormalization-group improved perturbation theory at the one-loop level.
Square-root singularities obtained in the Euclidean domain are attributed to
artifacts of the one-loop approximation in the maximal Abelian gauge and the
standard normalization condition for the propagator used in our study. It is
argued that this gauge is essentially nonperturbative.Comment: 15 pages, 2 figure
AUTOMATED COMPUTER SYSTEM FOR INTERACTIVE COMMUNICATION WITH А DRIVER
The electronic system which serves for the convenience of driving and improve neut of traffic safety has been regarded. Innovative development of an integrated system of voice control with the possibility of interactive communication and the function of preventing from falling asleep has been given
- …