333 research outputs found

    The glueball spectrum from an anisotropic lattice study

    Get PDF
    The spectrum of glueballs below 4 GeV in the SU(3) pure-gauge theory is investigated using Monte Carlo simulations of gluons on several anisotropic lattices with spatial grid separations ranging from 0.1 to 0.4 fm. Systematic errors from discretization and finite volume are studied, and the continuum spin quantum numbers are identified. Care is taken to distinguish single glueball states from two-glueball and torelon-pair states. Our determination of the spectrum significantly improves upon previous Wilson action calculations.Comment: 14 pages, 8 figures, uses REVTeX and epsf.sty (final version published in Physical Review D

    Nucleon, Δ\Delta and Ω\Omega excited states in Nf=2+1N_f=2+1 lattice QCD

    Full text link
    The energies of the excited states of the Nucleon, Δ\Delta and Ω\Omega are computed in lattice QCD, using two light quarks and one strange quark on anisotropic lattices. The calculation is performed at three values of the light quark mass, corresponding to pion masses mπm_{\pi} = 392(4), 438(3) and 521(3) MeV. We employ the variational method with a large basis of interpolating operators enabling six energies in each irreducible representation of the lattice to be distinguished clearly. We compare our calculation with the low-lying experimental spectrum, with which we find reasonable agreement in the pattern of states. The need to include operators that couple to the expected multi-hadron states in the spectrum is clearly identified.Comment: Revised for publication. References added, Table VI expanded to add strange baryon multiparticle thresholds and multiparticle thresholds added to Figs. 4, 5 and 6. 15 pages, 6 figure

    Multi-hadron states in Lattice QCD spectroscopy

    Full text link
    The ability to reliably measure the energy of an excited hadron in Lattice QCD simulations hinges on the accurate determination of all lower-lying energies in the same symmetry channel. These include not only single-particle energies, but also the energies of multi-hadron states. This talk deals with the determination of multi-hadron energies in Lattice QCD. The group-theoretical derivation of lattice interpolating operators that couple optimally to multi-hadron states is described. We briefly discuss recent algorithmic developments which allow for the efficient implementation of these operators in software, and present numerical results from the Hadron Spectrum Collaboration.Comment: 5 pages, 3 figures, talk given at Hadron 2009, Tallahassee, Florida, December 1, 200

    Tadpole-improved SU(2) lattice gauge theory

    Get PDF
    A comprehensive analysis of tadpole-improved SU(2) lattice gauge theory is made. Simulations are done on isotropic and anisotropic lattices, with and without improvement. Two tadpole renormalization schemes are employed, one using average plaquettes, the other using mean links in Landau gauge. Simulations are done with spatial lattice spacings asa_s in the range of about 0.1--0.4 fm. Results are presented for the static quark potential, the renormalized lattice anisotropy at/asa_t/a_s (where ata_t is the ``temporal'' lattice spacing), and for the scalar and tensor glueball masses. Tadpole improvement significantly reduces discretization errors in the static quark potential and in the scalar glueball mass, and results in very little renormalization of the bare anisotropy that is input to the action. We also find that tadpole improvement using mean links in Landau gauge results in smaller discretization errors in the scalar glueball mass (as well as in the static quark potential), compared to when average plaquettes are used. The possibility is also raised that further improvement in the scalar glueball mass may result when the coefficients of the operators which correct for discretization errors in the action are computed beyond tree level.Comment: 14 pages, 7 figures (minor changes to overall scales in Fig.1; typos removed from Eqs. (3),(4),(15); some rewording of Introduction

    Chiral Suppression of Scalar Glueball Decay

    Full text link
    Because glueballs are SU(3)_{Flavor} singlets, they are expected to couple equally to u,d, and s quarks, so that equal coupling strengths to \pi^+\pi^- and K^+K^- are predicted. However, we show that chiral symmetry implies the scalar glueball amplitude for G_0 \to \qbq is proportional to the quark mass, so that mixing with \sbs mesons is enhanced and decays to K^+K^- are favored over \pi^+\pi^-. Together with evidence from lattice calculations and from experiment, this supports the hypothesis that f_0(1710) is the ground state scalar glueball.Comment: 9 pages; This revision reconciles posting (approximately) with published version. Posting contains figures that are omitted in the publicatio

    Lattice study on kaon nucleon scattering length in the I=1 channel

    Full text link
    Using the tadpole improved clover Wilson quark action on small, coarse and anisotropic lattices, KNKN scattering length in the I=1 channel is calculated within quenched approximation. The results are extrapolated towards the chiral and physical kaon mass region. Finite volume and finite lattice spacing errors are also analyzed and a result in the infinite volume and continuum limit is obtained which is compatible with the experiment and the results from Chiral Perturbation Theory.Comment: 15 pages, 4 figures, typeset by latex using elsart.cls,minor change

    Scaling and Further Tests of Heavy Meson Decay Constant Determinations from Nonrelativistic QCD

    Full text link
    We present results for the B_s meson decay constant f_{B_s} from simulations at three lattice spacings in the range a^{-1}=1.1 to 2.6 GeV using NRQCD heavy quarks and clover light quarks in the quenched approximation. We study scaling of this quantity and check the consistency between mesons decaying from rest and from a state with nonzero spatial momentum. The cancellation of power law contributions that arise in the NRQCD formulation of heavy-light currents is discussed. On the coarsest lattice the D_s meson decay constant f_{D_s} is calculated. Our best values for the decay constants are given by f_{B_s} = 187(4)(4)(11)(2)(7)(6) MeV and f_{D_s} = 223(6)(31)(38)(23)(9)(^{+3}_{-1}) MeV.Comment: 29 pages with 7 postscript figures, improved error analysis, version to appear in Physical Review
    • …
    corecore