11 research outputs found

    Biological and Non-Biological Methods for Lignocellulosic Biomass Deconstruction

    Get PDF
    Owing to their abundance and cost-effectiveness, lignocellulosic materials have attracted increasing attention in clean energy technologies over the last decade. However, the complex polymer structure in these residues makes it difficult to extract the fermentable sugars. Therefore, various pretreatment regimes have been used resulting in the breaking of lignocelluloses’ physical and chemical structures, thereby enhancing the availability of the polysaccharides which are subsequently hydrolysed into different biocommodities. This chapter provides an evaluation of some of the latest exploited methodologies that are used in the pretreatment of lignocellulosic materials. Moreover, the chapter discusses the advantages and disadvantages of each method

    Sugar cane bagasse prehydrolysis using hot water

    No full text
    Results are presented on the hot water prehydrolysis of sugar cane bagasse for obtaining ethanol by fermentation. The experimental study consisted of the determination of the effect of temperature and time of prehydrolysis on the extraction of hemicelluloses, with the objective of selecting the best operating conditions that lead to increased yield of extraction with a low formation of inhibitors. The study, carried out in a pilot plant scale rotational digester, using a 3² experimental design at temperatures of 150-190ºC and times of 60-90 min, showed that it is possible to perform the hot water prehydrolysis process between 180-190ºC in times of 60-82 min, yielding concentrations of xylose > 35 g/L, furfural < 2.5 g/L, phenols from soluble lignin < 1.5 g/L, and concentrations < 3.0 g/L of hemicelluloses in the cellolignin residue. These parameters of temperature and prehydrolysis time could be used for the study of the later hydrolysis and fermentation stages of ethanol production from sugar cane bagasse

    Microwave-assisted thermochemical and primary hydrolytic conversions of lignocellulosic resources: a review

    Full text link
    peer reviewedFaced with the inevitable depletion of fossil resources, agricultural productions have rapidly emerged as promising renewable alternatives. Particularly, the conversion of lignocellulosic materials has nowadays opened new vistas for the production of energy, biofuels and chemicals. In this literature review, microwave technology is described as an original heating source either for the thermochemical conversions (at temperatures up to 400°C) of lignocellulose into biofuels or the pretreatment (below 400°C) and further hydrolysis of lignocellulose into bioethanol and other valuable chemicals. Advantages of microwave approaches include a commonly observed acceleration in reaction rate and improved selectivities and yields

    Methods for Pretreatment of Lignocellulosic Biomass for Efficient Hydrolysis and Biofuel Production

    No full text

    Pretreatment of Lignocellulosic Biomass

    No full text
    corecore