131 research outputs found

    Structure and properties of the outer membranes of Brucella abortus and Brucella melitensis

    Get PDF
    The brucellae are Gram-negative bacteria characteristically able to multiply facultatively within phagocytic cells and which cause a zoonosis of world-wide importance. This article reviews the structure and topology of the main components (lipopolysaccharide, native hapten polysaccharide, free lipids and proteins) of the outer membranes of Brucella abortus and B. melitensis, as well as some distinctive properties (permeability and interactions with cationic peptides) of these membranes. On these data, an outer membrane model is proposed in which, as compared to other Gram-negatives, there is a stronger hydrophobic anchorage for the lipopolysaccharide, free lipids, porin proteins and lipoproteins, and a reduced surface density of anionic groups, which could be partially or totally neutralized by ornithine lipids. This model accounts for the permeability of Brucella to hydrophobic permeants and for its resistance to the bactericidal oxygen-independent systems of phagocytes

    Release of outer membrane fragments by exponentially growing Brucella melitensis cells

    Get PDF
    Rough and smooth strains of Brucella melitensis released a membranous material that was devoid of detectable NADH oxidase and succinic dehydrogenase activity (cytoplasmic membrane markers) but that contained lipopolysaccharide, proteins, and phospholipids. This material was composed of two fractions that had similar chemical compositions but that were of different sizes which were separated by differential ultracentrifugation. Electron microscopy showed that both fractions are made of unit membrane structures. The membrane fragments were released during the exponential phase of growth, and no leakage of malic dehydrogenase activity (cytosol marker) was detected. Thus, the fragments were unlikely a result of cell lysis. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western blot analysis showed that, although group 2 Brucella outer membrane proteins and lipoprotein were not detected, the proteins in the membranous material were outer membrane proteins. Gas-liquid chromatography analysis showed a similar fatty acid profile for the cell envelope and the outer membrane fragments of the smooth strain B. melitensis 16M. In contrast, the outer membrane fragments from the rough 115 strain were enriched in palmitic and stearic acids. With respect to the unfractionated cell envelope, outer membrane fragments were enriched in phosphatidylcholine, a phospholipid that is unusual in bacterial membranes

    The outer membranes of Brucella spp. are not barriers to hydrophobic permeants

    Get PDF
    The patterns of susceptibility to hydrophobic and hydrophilic drugs and the uptake of the fluorescent probe N-phenyl-naphthylamine in Brucella spp., Haemophilus influenzae, Escherichia coli, and deep rough Salmonella minnesota mutants were compared. The results show that the outer membranes of smooth and naturally rough Brucella spp. do not represent barriers to hydrophobic permeants and that this absence of a barrier relates at least in part to the properties of Brucella lipopolysaccharide

    Immunological identity of brucella native hapten, polysaccharide B, and yersinia enterocolitica serotype 9 native hapten

    Get PDF
    Yersinia enterocolitica serotype 9 contained an antigenic component giving a reaction of total identity with Brucella native hapten and polysaccharide B. This component was present in a phenol-water extract (fraction 5; M. Redfearn, Ph.D. Thesis, University of Wisconsin, Madison, 1960) along with the smooth lipopolysaccharide. The native hapten could be purified free of lipopolysaccharide and proteins by gel filtration

    A review of three decades of use of the cattle brucellosis rough vaccine Brucella abortus RB51: myths and facts

    Get PDF
    Cattle brucellosis is a severe zoonosis of worldwide distribution caused by Brucella abortus and B. melitensis. In some countries with appropriate infrastructure, animal tagging and movement control, eradication was possible through efficient diagnosis and vaccination with B. abortus S19, usually combined with test-and-slaughter (T/S). Although S19 elicits anti-smooth lipopolysaccharide antibodies that may interfere in the differentiation of infected and vaccinated animals (DIVA), this issue is minimized using appropriate S19 vaccination protocols and irrelevant when high-prevalence makes mass vaccination necessary or when eradication requisites are not met. However, S19 has been broadly replaced by vaccine RB51 (a rifampin-resistant rough mutant) as it is widely accepted that is DIVA, safe and as protective as S19. These RB51 properties are critically reviewed here using the evidence accumulated in the last 35 years. Controlled experiments and field evidence shows that RB51 interferes in immunosorbent assays (iELISA, cELISA and others) and in complement fixation, issues accentuated by revaccinating animals previously immunized with RB51 or S19. Moreover, contacts with virulent brucellae elicit anti-smooth lipopolysaccharide antibodies in RB51 vaccinated animals. Thus, accepting that RB51 is truly DIVA results in extended diagnostic confusions and, when combined with T/S, unnecessary over-culling. Studies supporting the safety of RB51 are flawed and, on the contrary, there is solid evidence that RB51 is excreted in milk and abortifacient in pregnant animals, thus being released in abortions and vaginal fluids. These problems are accentuated by the RB51 virulence in humans, lack diagnostic serological tests detecting these infections and RB51 rifampicin resistance. In controlled experiments, protection by RB51 compares unfavorably with S19 and lasts less than four years with no evidence that RB51-revaccination bolsters immunity, and field studies reporting its usefulness are flawed. There is no evidence that RB51 protects cattle against B. melitensis, infection common when raised together with small ruminants. Finally, data acumulated during cattle brucellosis eradication in Spain shows that S19-T/S is far more efficacious than RB51-T/S, which does not differ from T/S alone. We conclude that the assumption that RB51 is DIVA, safe, and efficaceous results from the uncritical repetition of imperfectly examined evidence, and advise against its use.Los autores desean agradecer el apoyo de la Academia Nacional de Ciencias de Costa Rica, Gobierno de Aragón (Grupo de Investigación A21_20R), y MINECO (PID2019-107601RA-C32 y PID2019-107601RB-C31 financiados por MCIN/AEI/ 10.1303910.13039/501100011033).Publishe

    Isolation of brucella strains in cattle from sedentary and nomadic communities and its public health implication

    Get PDF
    Brucellosis is a highly infectious disease caused by bacteria of the genus brucella affecting animals leading to high economic loss and an impediment to livestock exportation. It also infects man with serious public health consequences. The disease is one of the world’smost important neglected tropical zoonoses. Brucellosis is considered endemic in Nigeria and current information on isolation in sedentary and nomadic cattle is required. We carried out an active surveillance in sedentary cattle in Kachia Grazing Reserve (KGR), Kaduna State and in nomadic communities on the Jos Plateau to isolate brucella organisms and carry out phenotypic and molecular characterization of the isolates to species leve

    Molecular recognition of lipopolysaccaride by the lantibiotic nisin

    Get PDF
    Nisin is a lanthionine antimicrobial effective against diverse Gram-positive bacteria and is used as a food preservative worldwide. Its action is mediated by pyrophosphate recognition of the bacterial cell wall receptors lipid II and undecaprenyl pyrophosphate. Nisin/receptor complexes disrupt cytoplasmic membranes, inhibit cell wall synthesis and dysregulate bacterial cell division. Gram-negative bacteria are much more tolerant to antimicrobials including nisin. In contrast to Gram-positives, Gram-negative bacteria possess an outer membrane, the major constituent of which is lipopolysaccharide (LPS). This contains surface exposed phosphate and pyrophosphate groups and hence can be targeted by nisin. Here we describe the impact of LPS on membrane stability in response to nisin and the molecular interactions occurring between nisin and membrane-embedded LPS from different Gram-negative bacteria. Dye release from liposomes shows enhanced susceptibility to nisin in the presence of LPS, particularly rough LPS chemotypes that lack an O-antigen whereas LPS from microorganisms sharing similar ecological niches with antimicrobial producers provides only modest enhancement. Increased susceptibility was observed with LPS from pathogenic Klebsiella pneumoniae compared to LPS from enteropathogenic Salmonella enterica and gut commensal Escherichia coli. LPS from Brucella melitensis, an intra-cellular pathogen which is adapted to invade professional and non-professional phagocytes, appears to be refractory to nisin. Molecular complex formation between nisin and LPS was studied by solid state MAS NMR and revealed complex formation between nisin and LPS from most organisms investigated except B. melitensis. LPS/nisin complex formation was confirmed in outer membrane extracts from E. coli

    The outer membranes of Brucella spp. are resistant to bactericidal cationic peptides

    Get PDF
    The actions of polymyxin B, rabbit polymorphonuclear lysosome extracts, 14 polycationic peptides (including defensin NP-2, cecropin P1, lactoferricin B, and active peptides from cationic protein 18 and bactenecin), EDTA, and Tris on Brucella spp. were studied, with other gram-negative bacteria as controls. Brucella spp. were comparatively resistant to all of the agents listed above and bound less polymyxin B, and their outer membranes (OMs) were neither morphologically altered nor permeabilized to lysozyme by polymyxin B concentrations, although both effects were observed for controls. EDTA and peptides increased or accelerated the partition of the hydrophobic probe N-phenyl-naphthylamine into Escherichia coli and Haemophilus influenzae OMs but had no effect on Brucella OMs. Since Brucella and H. influenzae OMs are permeable to hydrophobic compounds (G. Martínez de Tejada and I. Moriyón, J. Bacteriol. 175:5273-5275, 1993), the results show that such unusual permeability is not necessarily related to resistance to polycations. Although rough (R) B. abortus and B. ovis were more resistant than the controls were, there were qualitative and quantitative differences with smooth (S) brucellae; this may explain known host range and virulence differences. Brucella S-lipopolysaccharides (LPSs) had reduced affinities for polycations, and insertion of Brucella and Salmonella montevideo S-LPSs into the OM of a Brucella R-LPS mutant increased and decreased, respectively, its resistance to cationic peptides. The results show that the core lipid A of Brucella LPS plays a major role in polycation resistance and that O-chain density also contributes significantly. It is proposed that the features described above contribute to Brucella resistance to the oxygen-independent systems of phagocytes

    Evaluation of the relatedness of Brucella spp. and Ochrobactrum anthropi and description of Ochrobactrum intermedium sp. nov., a new species with a closer relationship to Brucella spp

    Get PDF
    The relatedness of Brucella spp. and Ochrobactrum anthropi was studied by protein profiling, Western blot, immunoelectrophoresis and 16S rRNA analysis. Whole-cell and soluble proteins of brucellae and O. anthropi showed serological cross-reactivities quantitatively and qualitatively more intense than those existing with similar extracts of Agrobacterium spp. Numerical analysis of Western blot profiles of whole-cell extracts showed that O. anthropi LMG 3301 was closer to Brucella spp. than to O. anthropi LMG 3331T, a result not obtained by protein profiling. These differences were not observed by Western blot with soluble fractions, and immunoelectrophoretic analyses suggested that this was due to destruction of conformational epitopes in Western blot procedures with the subsequent simplification of antigenic profile. Analysis of the 16S rRNA sequences of strains previously used in the species definition confirmed that strain LMG 3301, and also LMG 3306, were closer to the brucellae, and that LMG 3331T was in a separate cluster. The LMG 3301 and the LMG 3331T clusters could also be separated by their different colistin sensitivity and by PCR with 16S rRNA Brucella primers, and both methods showed strains of both clusters among clinical isolates classified as O. anthropi by conventional tests. These results and those of previous DNA-DNA hybridization studies [Holmes, B., Popoff, M., Kiredjian, M. & Kersters, K. (1988). Int J Syst Bacteriol 38, 406-416] show that the LMG 3301 cluster and related clinical isolates should be given a new species status for which the name Ochrobactrum intermedium sp. nov. is proposed (type strain is LMG 3301T=NCTC 12171T = CNS 2-75T)

    Spontaneous excision of the O-polysaccharide wbkA glycosyltranferase gene is a cause of dissociation of smooth to rough Brucella colonies

    Get PDF
    The brucellae are Gram-negative pathogens that cause brucellosis, a zoonosis of worldwide importance. The genus Brucella includes smooth and rough species that differ in that they carry smooth and rough lipopolysaccharides, respectively. Brucella abortus, B. melitensis, and B. suis are typical smooth species. However, these smooth brucellae dissociate into rough mutants devoid of the lipopolysaccharide O-polysaccharide, a major antigen and a virulence determinant encoded in regions wbo (included in genomic island-2) and wbk. We demonstrate here the occurrence of spontaneous recombination events in those three Brucella species leading to the deletion of a 5.5-kb fragment carrying the wbkA glycosyltranferase gene and to the appearance of rough mutants. Analysis of the recombination intermediates suggested homologous recombination between the ISBm1 insertion sequences flanking wbkA as the mechanism generating the deletion. Excision of wbkA was reduced but not abrogated in a recA-deficient mutant, showing the existence of both RecA-dependent and -independent processes. Although the involvement of the ISBm1 copies flanking wbkA suggested a transpositional event, the predicted transpositional joint could not be detected. This absence of detectable transposition was consistent with the presence of polymorphism in the inverted repeats of one of the ISBm1 copies. The spontaneous excision of wbkA represents a novel dissociation mechanism of smooth brucellae that adds to the previously described excision of genomic island-2. This ISBm1-mediated wbkA excision and the different %GC levels of the excised fragment and of other wbk genes suggest that the Brucella wbk locus is the result of at least two horizontal acquisition events
    corecore