339 research outputs found

    Napping after complex motor learning enhances juggling performance

    Get PDF
    AbstractThe present study examined whether a nap after complex motor learning enhanced the following day's physical performance. Eighteen volunteers met the inclusion criteria and were assigned to either a nap (n=9; men=5; mean age=21.0±1.5) or no-nap group (n=9; men=5; mean age=21.9±0.3). Participants practiced juggling in the morning and were tested immediately afterwards. Participants of the nap group were given a 70-minute nap opportunity after juggling practice, while the no-nap group stayed awake. Juggling performance was then tested in the evening (retest-1) and the next morning (retest-2). Two-way analysis of variance (group: nap, no-nap×time: test, retest-1, retest-2) found there was a significant effect of test time and a significant group×time interaction. The juggling performance of both groups improved from test to retest-1, respectively. However, the juggling performance level of the nap group was higher than that of the no-nap group at the retest-1. As predicted, a nap promptly after learning motor skills was associated with subsequently improved performance. Moreover, the juggling performance of the nap group showed additional significant improvements in the retest-2. In the no-nap group, however, there were no significant improvements in the juggling performance after nocturnal sleep. These results demonstrate that the benefits of a nap following learning were further enhanced after nocturnal sleep. The present results may provide justification for introducing nap periods into daily athletic training as an active method to improve performance

    The factorial structure of the dissociative experiences Scale : On sub-functions of dissociation. <Article>

    Get PDF
    This article focuses on the factorial structure of the dissociative experience scale to elucidate the sub-functions of dissociation. An initial investigation was undertaken with 269 undergraduate students (130 male, 139 female) to illustrate the factorial structure of the dissociative experience scale. Our exploratory factor analysis data indicate that the dissociative experience scale has a two-factorial structure. A subsequent investigation with 232 undergraduate students (48 male, 184 female) confirmed this structure. The analysis data from the second investigation indicate that the factorial structure provides cross-validation. The two investigations suggest that dissociation has two sub-functions, "detachment" and "compartmentalization." Furthermore, these two sub-functions may have different functions and/or purposes. Accordingly, more research is necessary to clarify which sub-functions are efficacious in what kind of experiences

    Effects of Assisted Reproduction Technology on Placental Imprinted Gene Expression

    Get PDF
    We used placental tissue to compare the imprinted gene expression of IGF2, H19, KCNQ1OT1, and CDKN1C of singletons conceived via assisted reproduction technology (ART) with that of spontaneously conceived (SC) singletons. Of 989 singletons examined (ART n = 65; SC n = 924), neonatal weight was significantly lower (P < .001) in the ART group than in the SC group, but placental weight showed no significant difference. Gene expression analyzed by real-time PCR was similar for both groups with appropriate-for-date (AFD) birth weight. H19 expression was suppressed in fetal growth retardation (FGR) cases in the ART and SC groups compared with AFD cases (P < .02 and P < .05, resp.). In contrast, CDKN1C expression was suppressed in FGR cases in the ART group (P < .01), while KCNQ1OT1 expression was hyperexpressed in FGR cases in the SC group (P < .05). As imprinted gene expression patterns differed between the ART and SC groups, we speculate that ART modifies epigenetic status even though the possibilities always exist

    A sacrificial millipede altruistically protects its swarm using a drone blood enzyme, mandelonitrile oxidase

    Get PDF
    Soldiers of some eusocial insects exhibit an altruistic self-destructive defense behavior in emergency situations when attacked by large enemies. The swarm-forming invasive millipede, Chamberlinius hualienensis, which is not classified as eusocial animal, exudes irritant chemicals such as benzoyl cyanide as a defensive secretion. Although it has been thought that this defensive chemical was converted from mandelonitrile, identification of the biocatalyst has remained unidentified for 40 years. Here, we identify the novel blood enzyme, mandelonitrile oxidase (ChuaMOX), which stoichiometrically catalyzes oxygen consumption and synthesis of benzoyl cyanide and hydrogen peroxide from mandelonitrile. Interestingly the enzymatic activity is suppressed at a blood pH of 7, and the enzyme is segregated by membranes of defensive sacs from mandelonitrile which has a pH of 4.6, the optimum pH for ChuaMOX activity. In addition, strong body muscle contractions are necessary for de novo synthesis of benzoyl cyanide. We propose that, to protect its swarm, the sacrificial millipede also applies a self-destructive defense strategy—the endogenous rupturing of the defensive sacs to mix ChuaMOX and mandelonitrile at an optimum pH. Further study of defensive systems in primitive arthropods will pave the way to elucidate the evolution of altruistic defenses in the animal kingdom
    corecore