134 research outputs found

    Pathophysiological Role of TRPM2 in Age-Related Cognitive Impairment in Mice

    Get PDF
    Aging causes various functional changes, including cognitive impairment and inflammatory responses in the brain. Transient receptor potential melastatin 2 (TRPM2), a Ca2+-permeable channel expressed abundantly in immune cells, exacerbates inflammatory responses. Previously, we reported that TRPM2 on resident microglia plays a critical role in exacerbating inflammation, white matter injury, and cognitive impairment during chronic cerebral hypoperfusion; however, the physiological or pathophysiological role of TRPM2 during age-associated inflammatory responses remains unclear. Therefore, we examined the effects of TRPM2 deletion in young (2–3 months) and older (12–24 months) mice. Compared with young wild-type (WT) mice, middle-aged (12–16 months) WT mice showed working and cognitive memory dysfunction and aged (20–24 months) WT mice exhibited impaired spatial memory. However, these characteristics were not seen in TRPM2 knockout (TRPM2-KO) mice. Consistent with the finding of cognitive impairment, aged WT mice exhibited white matter injury and hippocampal damage and an increase in the number of Iba1-positive cells and amounts of pro-inflammatory cytokines in the brain; these characteristics were not seen in TRPM2-KO mice. These findings suggest that TRPM2 plays a critical role in exacerbating inflammatory responses and cognitive dysfunction during aging

    A Genetic Variant in the IL-17 Promoter Is Functionally Associated with Acute Graft-Versus-Host Disease after Unrelated Bone Marrow Transplantation

    Get PDF
    Interleukin IL-17 is a proinflammatory cytokine that has been implicated in the pathogenesis of various autoimmune diseases. The single nucleotide polymorphism (SNP), rs2275913, in the promoter region of the IL-17 gene is associated with susceptibility to ulcerative colitis. When we examined the impact of rs2275913 in a cohort consisting of 438 pairs of patients and their unrelated donors transplanted through the Japan Marrow Donor Program, the donor IL-17 197A allele was found to be associated with a higher risk of acute graft-versus-host disease (GVHD; hazard ratio [HR], 1.46; 95% confidence interval [CI], 1.00 to 2.13; P = 0.05). Next, we investigated the functional relevance of the rs2275913 SNP. In vitro stimulated T cells from healthy individuals possessing the 197A allele produced significantly more IL-17 than those without the 197A allele. In a gene reporter assay, the 197A allele construct induced higher luciferase activity than the 197G allele, and the difference was higher in the presence of T cell receptor activation and was abrogated by cyclosporine treatment. Moreover, the 197A allele displayed a higher affinity for the nuclear factor activated T cells (NFAT), a critical transcription factor involved in IL-17 regulation. These findings substantiate the functional relevance of the rs2275913 polymorphism and indicate that the higher IL-17 secretion by individuals with the 197A allele likely accounts for their increased risk for acute GVHD and certain autoimmune diseases

    The astrocytic TRPA1 channel mediates an intrinsic protective response to vascular cognitive impairment via LIF production

    Get PDF
    認知症に対する新たな生体防御機構の発見 --アストロサイトのTRPA1活性化が、LIF産生を介して白質傷害や認知機能障害を防ぐ--. 京都大学プレスリリース. 2023-07-24.Vascular cognitive impairment (VCI) refers to cognitive alterations caused by vascular disease, which is associated with various types of dementia. Because chronic cerebral hypoperfusion (CCH) induces VCI, we used bilateral common carotid artery stenosis (BCAS) mice as a CCH-induced VCI model. Transient receptor potential ankyrin 1 (TRPA1), the most redox-sensitive TRP channel, is functionally expressed in the brain. Here, we investigated the pathophysiological role of TRPA1 in CCH-induced VCI. During early-stage CCH, cognitive impairment and white matter injury were induced by BCAS in TRPA1-knockout but not wild-type mice. TRPA1 stimulation with cinnamaldehyde ameliorated BCAS-induced outcomes. RNA sequencing analysis revealed that BCAS increased leukemia inhibitory factor (LIF) in astrocytes. Moreover, hydrogen peroxide-treated TRPA1-stimulated primary astrocyte cultures expressed LIF, and culture medium derived from these cells promoted oligodendrocyte precursor cell myelination. Overall, TRPA1 in astrocytes prevents CCH-induced VCI through LIF production. Therefore, TRPA1 stimulation may be a promising therapeutic approach for VCI

    Identification of a Polymorphic Gene, BCL2A1, Encoding Two Novel Hematopoietic Lineage-specific Minor Histocompatibility Antigens

    Get PDF
    We report the identification of two novel minor histocompatibility antigens (mHAgs), encoded by two separate single nucleotide polymorphisms on a single gene, BCL2A1, and restricted by human histocompatibility leukocyte antigen (HLA)-A*2402 (the most common HLA-A allele in Japanese) and B*4403, respectively. Two cytotoxic T lymphocyte (CTL) clones specific for these mHAgs were first isolated from two distinct recipients after hematopoietic cell transplantation. Both clones lyse only normal and malignant cells within the hematopoietic lineage. To localize the gene encoding the mHAgs, two-point linkage analysis was performed on the CTL lytic patterns of restricting HLA-transfected B lymphoblastoid cell lines obtained from Centre d'Etude du Polymorphisme Humain. Both CTL clones showed a completely identical lytic pattern for 4 pedigrees and the gene was localized within a 3.6-cM interval of 15q24.3–25.1 region that encodes at least 46 genes. Of those, only BCL2A1 has been reported to be expressed in hematopoietic cells and possess three nonsynonymous nucleotide changes. Minigene transfection and epitope reconstitution assays with synthetic peptides identified both HLA-A*2402– and B*4403-restricted mHAg epitopes to be encoded by distinct polymorphisms within BCL2A1

    Frequent loss of HLA alleles associated with copy number-neutral 6pLOH in acquired aplastic anemia

    Get PDF
    Idiopathic aplastic anemia (AA) is a common cause of acquired BM failure. Although autoimmunity to hematopoietic progenitors is thought to be responsible for its pathogenesis, little is known about the molecular basis of this autoimmunity. Here we show that a substantial proportion of AA patients harbor clonal hematopoiesis characterized by the presence of acquired copy number-neutral loss of heterozygosity (CNN-LOH) of the 6p arms (6pLOH). The 6pLOH commonly involved the HLA locus, leading to loss of one HLA haplotype. Loss of HLA-Aexpression from multiple lineages of leukocytes was confirmed by flow cytometry in all 6pLOH(+) cases. Surprisingly, the missing HLAalleles in 6pLOH(+) clones were conspicuously biased to particular alleles, including HLA-A*02:01, A*02:06, A*31:01, and B*40:02. A large-scale epidemiologic study on the HLA alleles of patients with various hematologic diseases revealed that the 4 HLA alleles were over-represented in the germline of AA patients. These findings indicate that the 6pLOH(+) hematopoiesis found in AA represents "escapes"hematopoiesis from the autoimmunity, which is mediated by cytotoxic T cells that target the relevant autoantigens presented on hematopoietic progenitors through these class I HLAs. Our results provide a novel insight into the genetic basis of the pathogenesis of AA. © 2011 by The American Society of Hematology

    Outcome of Allogeneic Hematopoietic Stem Cell Transplantation for Acute Myeloid Leukemia Patients with Central Nervous System Involvement

    Get PDF
    AbstractCentral nervous system (CNS) involvement in adult acute myeloid leukemia (AML) is rare and associated with poor outcomes. Therefore, CNS involvement in AML is an indicator for allogeneic hematopoietic stem cell transplantation (allo-HSCT). However, the impact of CNS involvement in AML on the outcome of allo-HSCT remains unclear. We performed a large-scale nationwide retrospective analysis to elucidate the outcomes of allo-HSCT on AML with CNS involvement (CNS+AML). Clinical data were collected from a registry database of the Japan Society for Hematopoietic Cell Transplantation. CNS involvement was defined as the infiltration of leukemia cells into the CNS or myeloid sarcoma in the CNS identified at any time from diagnosis to transplantation. One hundred fifty-seven patients with CNS+AML underwent allo-HSCT between 2006 and 2011. The estimated overall survival, cumulative incidence of relapse and nonrelapse mortality at 2 years for CNS+AML (51.2%, 30.2%, and 14.5%, respectively) were comparable with those for AML without CNS involvement (48.6%, 27.4%, and 22.0%, respectively). Univariate and multivariate analyses indicated that the development of chronic graft-versus-host disease, disease status, and cytogenetic risk category were independent prognostic factors for overall survival for CNS+AML. These results suggest that allo-HSCT may improve outcomes in patients with CNS+AML

    The AKARI far-infrared all-sky survey maps

    Get PDF
    We present a far-infrared all-sky atlas from a sensitive all-sky survey using the Japanese AKARI satellite. The survey covers >99% of the sky in four photometric bands centred at 65 μm, 90 μm, 140 μm, and 160 μm, with spatial resolutions ranging from 1' to 1".5. These data provide crucial information on the investigation and characterisation of the properties of dusty material in the interstellar medium (ISM), since a significant portion of itsenergy is emitted between ∼ 50 and 200μm. The large-scale distribution of interstellar clouds, their thermal dust temperatures, and their column densities can be investigated with the improved spatial resolution compared to earlier all-sky survey observations. In addition to the point source distribution, the large-scale distribution of ISM cirrus emission, and its filamentary structure, are well traced. We have made the first public release of the full-sky data to provide a legacy data set for use in the astronomical communit
    corecore