213 research outputs found

    Artificial Intelligence, Robots, and Philosophy

    Get PDF
    This book is a collection of all the papers published in the special issue “Artificial Intelligence, Robots, and Philosophy,” Journal of Philosophy of Life, Vol.13, No.1, 2023, pp.1-146. The authors discuss a variety of topics such as science fiction and space ethics, the philosophy of artificial intelligence, the ethics of autonomous agents, and virtuous robots. Through their discussions, readers are able to think deeply about the essence of modern technology and the future of humanity. All papers were invited and completed in spring 2020, though because of the Covid-19 pandemic and other problems, the publication was delayed until this year. I apologize to the authors and potential readers for the delay. I hope that readers will enjoy these arguments on digital technology and its relationship with philosophy. *** Contents*** Introduction : Descartes and Artificial Intelligence; Masahiro Morioka*** Isaac Asimov and the Current State of Space Science Fiction : In the Light of Space Ethics; Shin-ichiro Inaba*** Artificial Intelligence and Contemporary Philosophy : Heidegger, Jonas, and Slime Mold; Masahiro Morioka*** Implications of Automating Science : The Possibility of Artificial Creativity and the Future of Science; Makoto Kureha*** Why Autonomous Agents Should Not Be Built for War; István Zoltán Zárdai*** Wheat and Pepper : Interactions Between Technology and Humans; Minao Kukita*** Clockwork Courage : A Defense of Virtuous Robots; Shimpei Okamoto*** Reconstructing Agency from Choice; Yuko Murakami*** Gushing Prose : Will Machines Ever be Able to Translate as Badly as Humans?; Rossa Ó Muireartaigh**

    A Homozygous Mutation in UGT1A1 Exon 5 May Be Responsible for Persistent Hyperbilirubinemia in a Japanese Girl with Gilbert’s Syndrome

    Get PDF
    The UGT1A1 gene encodes a responsible enzyme, UDP-glucuronosyltransferase1A1, for bilirubin metabolism. Many mutations have already been identified in patients with inherited disorders with hyperbilirubinemia, Crigler-Najjar syndrome and Gilbert’s syndrome. In this study, we identified a UGT1A1 mutation in an 8-year-old Japanese girl with persistent hyperbilirubinemia who was clinically diagnosed as having Gilbert’s syndrome. For the mutational analysis of UGT1A1, we performed a full sequence analysis of the gene using the patient’s DNA. She was homozygous for a T to G transversion at nucleotide position 1456 in UGT1A1 exon 5 (c.1456T>G), leading to the substitution of aspartate for tyrosine at position 486 of the UGT1A1 protein (p.Y486D). In conclusion, the homozygous mutation of UGT1A1 may be responsible for persistent hyperbilirubinemia in this patient

    Autosomal dominant pseudohypoaldosteronism type 1 with a novel splice site mutation in MR gene

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Autosomal dominant pseudohypoaldosteronism type 1 (PHA1) is a rare inherited condition that is characterized by renal resistance to aldosterone as well as salt wasting, hyperkalemia, and metabolic acidosis. Renal PHA1 is caused by mutations of the human mineralcorticoid receptor gene (<it>MR</it>), but it is a matter of debate whether <it>MR </it>mutations cause mineralcorticoid resistance via haploinsufficiency or dominant negative mechanism. It was previously reported that in a case with nonsense mutation the mutant mRNA was absent in lymphocytes because of nonsense mediated mRNA decay (NMD) and therefore postulated that haploinsufficiency alone can give rise to the PHA1 phenotype in patients with truncated mutations.</p> <p>Methods and Results</p> <p>We conducted genomic DNA analysis and mRNA analysis for familial PHA1 patients extracted from lymphocytes and urinary sediments and could detect one novel splice site mutation which leads to exon skipping and frame shift result in premature termination at the transcript level. The mRNA analysis showed evidence of wild type and exon-skipped RT-PCR products.</p> <p>Conclusion</p> <p>mRNA analysis have been rarely conducted for PHA1 because kidney tissues are unavailable for this disease. However, we conducted RT-PCR analysis using mRNA extracted from urinary sediments. We could demonstrate that NMD does not fully function in kidney cells and that haploinsufficiency due to NMD with premature termination is not sufficient to give rise to the PHA1 phenotype at least in this mutation of our patient. Additional studies including mRNA analysis will be needed to identify the exact mechanism of the phenotype of PHA.</p

    The Japanese space gravitational wave antenna; DECIGO

    Get PDF
    DECi-hertz Interferometer Gravitational wave Observatory (DECIGO) is the future Japanese space gravitational wave antenna. DECIGO is expected to open a new window of observation for gravitational wave astronomy especially between 0.1 Hz and 10 Hz, revealing various mysteries of the universe such as dark energy, formation mechanism of supermassive black holes, and inflation of the universe. The pre-conceptual design of DECIGO consists of three drag-free spacecraft, whose relative displacements are measured by a differential Fabry– Perot Michelson interferometer. We plan to launch two missions, DECIGO pathfinder and pre- DECIGO first and finally DECIGO in 2024

    DECIGO pathfinder

    Get PDF
    DECIGO pathfinder (DPF) is a milestone satellite mission for DECIGO (DECi-hertz Interferometer Gravitational wave Observatory) which is a future space gravitational wave antenna. DECIGO is expected to provide us fruitful insights into the universe, in particular about dark energy, a formation mechanism of supermassive black holes, and the inflation of the universe. Since DECIGO will be an extremely large mission which will formed by three drag-free spacecraft with 1000m separation, it is significant to gain the technical feasibility of DECIGO before its planned launch in 2024. Thus, we are planning to launch two milestone missions: DPF and pre-DECIGO. The conceptual design and current status of the first milestone mission, DPF, are reviewed in this article

    Upregulation of ANGPTL6 in mouse keratinocytes enhances susceptibility to psoriasis

    Get PDF
    Psoriasis is a chronic inflammatory skin disease marked by aberrant tissue repair. Mutant mice modeling psoriasis skin characteristics have provided useful information relevant to molecular mechanisms and could serve to evaluate therapeutic strategies. Here, we found that epidermal ANGPTL6 expression was markedly induced during tissue repair in mice. Analysis of mice overexpressing ANGPTL6 in keratinocytes (K14-Angptl6 Tg mice) revealed that epidermal ANGPTL6 activity promotes aberrant epidermal barrier function due to hyperproliferation of prematurely differentiated keratinocytes. Moreover, skin tissues of K14-Angptl6 Tg mice showed aberrantly activated skin tissue inflammation seen in psoriasis. Levels of the proteins S100A9, recently proposed as therapeutic targets for psoriasis, also increased in skin tissue of K14-Angptl6 Tg mice, but psoriasis-like inflammatory phenotypes in those mice were not rescued by S100A9 deletion. This finding suggests that decreasing S100A9 levels may not ameliorate all cases of psoriasis and that diverse mechanisms underlie the condition. Finally, we observed enhanced levels of epidermal ANGPTL6 in tissue specimens from some psoriasis patients. We conclude that the K14-Angptl6 Tg mouse is useful to investigate psoriasis pathogenesis and for preclinical testing of new therapeutics. Our study also suggests that ANGPTL6 activation in keratinocytes enhances psoriasis susceptibility
    • 

    corecore