8,396 research outputs found
The evolution of surface magnetic fields in young solar-type stars
The surface rotation rates of young solar-type stars decrease rapidly with
age from the end of the pre-main sequence though the early main sequence. This
suggests that there is also an important change in the dynamos operating in
these stars, which should be observable in their surface magnetic fields. Here
we present early results in a study aimed at observing the evolution of these
magnetic fields through this critical time period. We are observing stars in
open clusters and stellar associations to provide precise ages, and using
Zeeman Doppler Imaging to characterize the complex magnetic fields. Presented
here are results for six stars, three in the in the beta Pic association (~10
Myr old) and three in the AB Dor association (~100 Myr old).Comment: To appear in the proceedings of IAU symposium 302: Magnetic fields
throughout stellar evolution. 2 pages, 3 figure
A homomorphism between link and XXZ modules over the periodic Temperley-Lieb algebra
We study finite loop models on a lattice wrapped around a cylinder. A section
of the cylinder has N sites. We use a family of link modules over the periodic
Temperley-Lieb algebra EPTL_N(\beta, \alpha) introduced by Martin and Saleur,
and Graham and Lehrer. These are labeled by the numbers of sites N and of
defects d, and extend the standard modules of the original Temperley-Lieb
algebra. Beside the defining parameters \beta=u^2+u^{-2} with u=e^{i\lambda/2}
(weight of contractible loops) and \alpha (weight of non-contractible loops),
this family also depends on a twist parameter v that keeps track of how the
defects wind around the cylinder. The transfer matrix T_N(\lambda, \nu) depends
on the anisotropy \nu and the spectral parameter \lambda that fixes the model.
(The thermodynamic limit of T_N is believed to describe a conformal field
theory of central charge c=1-6\lambda^2/(\pi(\lambda-\pi)).)
The family of periodic XXZ Hamiltonians is extended to depend on this new
parameter v and the relationship between this family and the loop models is
established. The Gram determinant for the natural bilinear form on these link
modules is shown to factorize in terms of an intertwiner i_N^d between these
link representations and the eigenspaces of S^z of the XXZ models. This map is
shown to be an isomorphism for generic values of u and v and the critical
curves in the plane of these parameters for which i_N^d fails to be an
isomorphism are given.Comment: Replacement of "The Gram matrix as a connection between periodic loop
models and XXZ Hamiltonians", 31 page
A barata do coqueiro Coraliomela brunnea Thunb. (1981) (Coleoptera: Chrisomelidae).
bitstream/item/43743/1/CPATC-DOCUMENTOS-1-A-BARATA-DO-COQUEIRO-FL-13115.pd
Refined conformal spectra in the dimer model
Working with Lieb's transfer matrix for the dimer model, we point out that
the full set of dimer configurations may be partitioned into disjoint subsets
(sectors) closed under the action of the transfer matrix. These sectors are
labelled by an integer or half-integer quantum number we call the variation
index. In the continuum scaling limit, each sector gives rise to a
representation of the Virasoro algebra. We determine the corresponding
conformal partition functions and their finitizations, and observe an
intriguing link to the Ramond and Neveu-Schwarz sectors of the critical dense
polymer model as described by a conformal field theory with central charge
c=-2.Comment: 44 page
Quadrupolar Order in Isotropic Heisenberg Models with Biquadratic Interaction
Through Quantum Monte Carlo simulation, we study the biquadratic-interaction
model with the SU(2) symmetry in two and three dimensions. The zero-temperature
phase diagrams for the two cases are identical and exhibit an intermediate
phase characterized by finite quadrupole moment, in agreement with mean-field
type arguments and the semi-classical theory. In three dimensions, we
demonstrate that the model in the quadrupolar regime has a phase transition at
a finite temperature. In contrast to predictions by mean-field theories, the
phase transition to the quadrupolar phase turns out to be of the second order.
We also examine the critical behavior in the two marginal cases with the SU(3)
symmetry.Comment: 4 pages 5 figure
Donor Electron Wave Functions for Phosphorus in Silicon: Beyond Effective Mass Theory
We calculate the electronic wave-function for a phosphorus donor in silicon
by numerical diagonalisation of the donor Hamiltonian in the basis of the pure
crystal Bloch functions. The Hamiltonian is calculated at discrete points
localised around the conduction band minima in the reciprocal lattice space.
Such a technique goes beyond the approximations inherent in the effective-mass
theory, and can be modified to include the effects of altered donor impurity
potentials, externally applied electro-static potentials, as well as the
effects of lattice strain. Modification of the donor impurity potential allows
the experimentally known low-lying energy spectrum to be reproduced with good
agreement, as well as the calculation of the donor wavefunction, which can then
be used to calculate parameters important to quantum computing applications.Comment: 10 pages, 5 figure
Developement dynamics of organic farming : elements for debate
Synthetic overview of the third workshop : development dynamics of organic farming
Searching for the quark-gluon plasma
The claims for production of high energy densities and possible new states of matter in collisions of nuclei by George F. Bertsch (Science, {\bf 265} (1994) 480-481) are examined and compared with simple explanations of the data which have appeared in the literature
- âŠ