57 research outputs found

    ミナミ タイヘイヨウ ヒカク チタイ ジョウヤク ケイセイ カテイ ニ オケル オーストタリア ノ カクグンシュク ガイコウ セイサク

    Full text link
    Alternate bilayer structures of N,N'-bis(2,5-di-tert-butylphenyl)-3,4,9,10- perylene dicarboximide (PDI), freebase phthalocyanines (Pc), and double-linked free-base phthalocyanine-fullerene dyad (Pc-C 60) were prepared by the Langmuir-Schäfer method and studied using a range of optical spectroscopy methods including femtosecond pump-probe and up-conversion. An efficient quenching of the PDI fluorescence by Pc and Pc-C 60 dyad was observed in both steady-state and time-resolved fluorescence measurements. The quenching takes place in less than a few picoseconds, and is due to energy transfer from perylene dicarboximide to phthalocyanine chromophore in PDI|Pc and PDI|Pc-C 60 films. In the PDI|Pc-C 60 bilayer structure the energy transfer is followed by a charge separation in the Pc-C 60 layer, yielding a long-lived (a few microseconds) intermolecular charge separated state similar to that reported recently for Pc-C 60 Langmuir-Blodgett films (Lehtivuori, H.; et al. J. Phys. Chem. C 2008, 112, 9896-9902)
    corecore