58 research outputs found

    Identification of common fragile sites in chromosomes of 2 species of bat (Chiroptera, Mammalia)

    Get PDF
    In the karyotypes of the bat species Molossus ater and M molossus, spontaneous and bromodeoxyuridine (BrdU)- or aphidicolin (APC)-sensitive fragile sites were located. Four chromosome regions harbored APC-sensitive fragile sites: 1q9 and 8q4 in both M ater and M molossus, 3q3 in M ater, and 1p7 in M molossus. The fragile sites in 1q9 and 8q4 were also observed without induction in M molossus. BrdU-sensitive fragile sites were not detected. Despite observations in several other species, the fragile sites detected in Molossus are not coincident with the breakpoints involved in the chromosome rearrangements occurring in the evolution of 7 species of the Molossidae family

    Chromosome studies of Brazilian vespertilionids Lasiurus cinereus and Lasiurus ega (Mammalia, Chiroptera)

    No full text
    Cytogenetical studies based on conventional coloration by Giemsa, C-banding and Ag-NOR were performed on 2 species of bats from the vespertilionid family: Lasiurus cinereus (Beauvois, 1796) and Lasiurus ega (Gervais, 1856). The 2n was 28 and FN was 48 in both species. The constitutive heterochromatin is located in centromeric regions in the two species and in the short arm of the subtelocentric X chromosome in L. ega. NORs were observed in the secondary constriction of the smaller autosome in both species

    Genetic relationships between Brazilian species of Molossidae and Phyllostomidae (Chiroptera, Mammalia)

    No full text
    A comparative analysis of G-banded karyotypes was performed for seven species of Chiroptera, representing two families (Phyllostomidae and Molossidae). Despite the differences in diploid and fundamental numbers, extensive homologies between six karyotypes were identified: A . planirostris, P. lineatus, S. lilium, G. soricina, P. hastatus (Phyllostomidae) and M. rufus (Molossidae). Robertsonian rearrangements and pericentric inversions account for the differences between the karyotypes of phyllostomid and molossid species. The homologies and rearrangements observed reinforce the monophiletic origin of phyllostomids and the inclusion of species in different subfamilies. In situ hybridization with genomic DNA revealed considerable conservation of the karyotypes, including C. perspicillata, that did not show G-band homologies with the other species analyzed. For the first time, chromosomal evidence is presented of a common origin for Phyllostomidae and Molossidae

    Genetic variability in species of bats revealed by RAPD analysis

    No full text
    Random amplified polymorphic DNA molecular marker was utilized as a means of analyzing genetic variability in seven bat species: Molossus molossus, M. rufus, Eumops glaucinus, E. perotis, Myotis nigricans, Eptesicus furinalis, and Artibeus planirostris. The determination of genetic diversity was based on 741 bands produced by a 20-random primer set. Only eight bands were considered monomorphic to one species. The greatest number of bands and the most polymorphic condition were exhibited by M. molossus, followed by M. nigricans, A. planirostris, E. furinalis, E. glaucinus, M. rufus, and E. perotis. Nei's genetic diversity index in the seven species considering the 20 primers was not greater than 0.22, but some primers were capable of detecting values between 0.39 and 0.49. Nei's unbiased genetic distance values and the UPGMA clustering pattern show that M. molossus and M. rufus have a close genetic relationship, unlike that observed between E. perotis and E. glaucinus. The latter was clustered with A. planirostris and E. furinalis. The low values for genetic diversity and distance observed indicate a genetic conservatism in the seven species. The fluorescent in situ hybridization experiments did not confirm a monomorphic condition for the eight bands identified, demonstrating that the monomorphic bands obtained by random amplified polymorphic DNA are insufficient for the identification of bat species

    Cytogenetic and random amplified polymorphic DNA analysis of Leptodactylus species from rural and urban environments (Anura, Amphibia)

    No full text
    Cytogenetic and random amplified polymorphic DNA analyses carried out in the species Leptodactylus podicipinus, L. ocellatus, L. labyrinthicus, and L. fuscus from rural and urban habitats of the northwest region of São Paulo State, Brazil, showed that the karyotypes (2n = 22), constitutive heterochromatin distribution and nucleolus organizer region (NOR) location did not differ between the populations from the two environments. The in situ hybridization with an rDNA probe confirmed the location of the NORs on chromosome 8 revealing an in tandem duplication of that region in one of the chromosomes of L. fuscus. DAPI showed that part of the C-band-positive heterochromatin is rich in AT, including that in the proximity the NORs in L. podicipinus and L. ocellatus. The molecular analyses showed that the two populations (urban and rural) of L. podicipinus and L. fuscus are similar from a genetic point of view. The urban and rural populations of species L. ocellatus and L. labyrinthicus showed differences in genetic structures, probably due to urbanization which interferes with the dispersion of those frogs. The marked differences observed between the two populations of L. ocellatus can be representing the cryptic condition of the species. Unweighted pair-group method of analysis and genetic distance analysis detected the genetic proximity between L. ocellatus and L. fuscus. The results indicate that there was no reduction in the genetic diversity in the populations from the urban environment; however, the survival of these frogs would not be guaranteed in the case of an increase in human impact especially for populations of L. labyrinthicus and L. ocellatus. ©FUNPEC-RP

    Ultrastructural characteristics of spermatogenesis in Pallas's mastiff bat, Molossus molossus (Chiroptera: Molossidae)

    No full text
    Despite the large number of species, their wide distribution, and unique reproductive characteristics, Neotropical bats have been poorly studied, and important aspects of the reproduction of these animals have not been elucidated. We made an ultrastructural analysis of spermatogenesis in Molossus molossus (Molossidae). The process of spermatogonial differentiation is similar to that found in other bats and is also relatively similar to that of Primates, with three main spermatogonia types: Ad, Ap, and B. Meiotic divisions proceed similarly to those of most mammals, and spermiogenesis is clearly divided into 12 steps, in the middle of the range known for bats (916 steps). Formation of the acrosome is similar to that known from other mammals; however, the ultrastructure of spermatozoa was found to have unique characteristics, including many wavy acrosomal projections on its surface, which seems to be specific for the family Molossidae. Comparing the ultrastructure of the spermatozoon of M. molossus with other bats already study, we observed that three characters vary: morphology of the outer dense fibers, of the perforatorium, and of the spermatozoon head. The great similarity of morphological characters between M. molossus and Platyrrhinus lineatus suggests that M. molossus is more closely related to the Phyllostomidae than to the Rhinolophidae and the Vespertilionidae. Microsc. Res. Tech. 2012. (C) 2012 Wiley Periodicals, Inc.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP
    • …
    corecore