435 research outputs found

    The Changing Competitive Position of the U.S. Economy: Implications for Public Policy

    Get PDF

    Simultaneous effect of spatial variability of ground motion due to site conditions and SSI on the seismic response of multi-span viaducts

    Get PDF
    This work focuses on the effects of the spatial variability of the seismic motion due to site effects on the seismic response of multi-span viaducts on pile foundations. A methodology is proposed to include the effects of both soil-structure interaction and non-synchronous seismic actions in the nonlinear response of bridges. Then, some results of nonlinear dynamic analyses performed on a multi-span bridge founded on soft soil are presented. The deposit is characterized by an inclined layout of the bedrock and the seismic input is represented by a set of suitably selected real accelerograms. Comparisons with results obtained considering synchronous seismic motions demonstrate the influence of site effects on the response of long bridges

    Beneficial role of exercise in the modulation of mdx muscle plastic remodeling and oxidative stress

    Get PDF
    Duchenne muscular dystrophy (DMD) is an X-linked recessive progressive lethal disorder caused by the lack of dystrophin, which determines myofibers mechanical instability, oxidative stress, inflammation, and susceptibility to contraction-induced injuries. Unfortunately, at present, there is no efficient therapy for DMD. Beyond several promising gene-and stem cells-based strategies under investigation, physical activity may represent a valid noninvasive therapeutic approach to slow down the progression of the pathology. However, ethical issues, the limited number of studies in humans and the lack of consistency of the investigated training interventions generate loss of consensus regarding their efficacy, leaving exercise prescription still questionable. By an accurate analysis of data about the effects of different protocol of exercise on muscles of mdx mice, the most widely-used pre-clinical model for DMD research, we found that low intensity exercise, especially in the form of low speed treadmill running, likely represents the most suitable exercise modality associated to beneficial effects on mdx muscle. This protocol of training reduces muscle oxidative stress, inflammation, and fibrosis process, and enhances muscle functionality, muscle regeneration, and hypertrophy. These conclusions can guide the design of appropriate studies on human, thereby providing new insights to translational therapeutic application of exercise to DMD patients

    Respiratory Effects of Exposure to Traffic-Related Air Pollutants During Exercise

    Get PDF
    Traffic-related air pollution (TRAP) is increasing worldwide. Habitual physical activity is known to prevent cardiorespiratory diseases and mortality, but whether exposure to TRAP during exercise affects respiratory health is still uncertain. Exercise causes inflammatory changes in the airways, and its interaction with the effects of TRAP or ozone might be detrimental, for both athletes exercising outdoor and urban active commuters. In this Mini-Review, we summarize the literature on the effects of exposure to TRAP and/or ozone during exercise on lung function, respiratory symptoms, performance, and biomarkers. Ozone negatively affected pulmonary function after exercise, especially after combined exposure to ozone and diesel exhaust (DE). Spirometric changes after exercise during exposure to particulate matter and ultrafine particles suggest a decrease in lung function, especially in patients with chronic obstructive pulmonary disease. Ozone frequently caused respiratory symptoms during exercise. Women showed decreased exercise performance and higher symptom prevalence than men during TRAP exposure. However, performance was analyzed in few studies. To date, research has not identified reliable biomarkers of TRAP-related lung damage useful for monitoring athletes' health, except in scarce studies on airway cells obtained by induced sputum or bronchoalveolar lavage. In conclusion, despite partly counteracted by the positive effects of habitual exercise, the negative effects of TRAP exposure to pollutants during exercise are hard to assess: outdoor exercise is a complex model, for multiple and variable exposures to air pollutants and pollutant concentrations. Further studies are needed to identify pollutant and/or time thresholds for performing safe outdoor exercise in cities

    Serum levels of total IgE and soluble CD23 in bronchial asthma

    Get PDF
    The aim of the present study was to compare, during the pollen season, serum levels of total IgE and soluble CD23 (sCD23) from patients with allergic bronchial asthma, with those from healthy subjects. Significantly higher levels of total IgE and sCD23 were found in patients with asthma compared to the control group. Both in normal controls and in asthmatic patients, a significant correlation was shown between the levels of these two molecules. In asthmatic patients, significant correlations were found for both total IgE and sCD23, with lung function measured as bronchial responsiveness to inhaled methacholine. These results suggest that in asthmatic patients, in addition to the study of total serum IgE levels, the assessment of sCD23 serum levels may be helpful in the evaluation of disease activity

    MITOCHONDRIAL MASS, DISTRIBUTION AND ACTIVITY DURING SEA URCHIN OOGENESIS

    Get PDF
    The sea urchin egg is a favourite model for studies of the molecular biology and physiology of fertilization and early development, yet we know sparingly little of its oocytes and of mitochondria behaviour during oogenesis. The process of oogenesis in most echinoderms is asynchronous so each ovary lobe has hundreds of oocytes at all stages of development. At the beginning of oogenesis, the oocyte is about 10 \ub5m in diameter. During the vitellogenic phase of oogenesis, the oocyte accumulate yolk proteins and grow to ten times their original size to 80 to 100 \ub5m in sea urchins. The oocyte, arrested at the prophase of the first meiotic division, is apparent with its large nucleus, the germinal vesicle (GV), containing a prominent nucleolus. Echinoid (such as sea urchin) and Holothurian oocytes complete meiotic maturation prior to fertilization, distinct from other echinoderms and almost all others animals. As maturation progresses, it occurs the GV breaks down (GVBD). These eggs may then be stored for weeks to months within the female before they are spawned, and the proportion of eggs in the ovary increases from early to late season, as the numbers of oocytes decline [1]. Mitochondria, generally known as the powerhouses of eukaryotic cells, play a primary role in cellular energetic metabolism, homeostasis and death. These organelles, with their multicopy genome maternally inherited, are directly involved at several levels in the reproductive process since their functional status influences the quality of oocytes and contributes to the process of fertilization and embryonic development. It has been demonstrated that the number of maternal mitochondria is sufficient to support development until late stages without new synthesis of mitochondrial DNA or production of new organelles [2]. During embryogenesis mitochondrial mass does not change, whereas mitochondrial respiration increases [3]. The behaviour of these organelles during oogenesis remains at moment unclear. In the present paper we studied, by Confocal Laser Scanning Microscopy tecnologies (CLSM), the mass and distribution, the activity and the DNA content of sea urchin Paracentrotus lividus mitochondria during oogenesis, by in vivo incubating oocytes of different size with cell-permeant probes specific for mitochondria and for DNA and by immunodetection of hsp60 chaperonine, a well known mitochondrial marker. In particular the oocytes were grouped in six classes: < 10, 20/30, 40/50, 60/70, 80/90 \ub5m, and 90 \ub5m ovulated egg, on the base of diameters. Microscopic observations were performed capturing 2 \ub5m thick layers of oocytes. Of the several thousands oocytes we observed, 20 for each different oogenesis stage were analyzed and processed. In order to interpret results and to draw unequivocal conclusions, we measured by IMAGE J software analysis the intensity values of fluorescent signals, as suggested in Agnello et al 2008 [4]. The mitochondria of oocytes with a diameter between 20 and 70 \ub5m, appeared to give rise to clusters that disappear in that of 80 \ub5m. In the oocytes between 60 and 90 \ub5m the red fluorescence seems to be more evident around the germinal vesicle (the merge tends to red), suggesting an increasing oxidative phosphorylation activity. In the ovulated eggs, red and green fluorescence are uniformly distributed suggesting that mitochondria are dispersed in the cytoplasm. In addition the merge of green and red colours shows that the whole mitochondrial population is consuming oxygen at the same level (the resulting colours tends to yellow), figure 1. In order to calculate the total mitochondrial mass and activity we integrated the values of pixel intensities for all captured sections and used the arithmetic means to draw a statistical analysis. Results suggest a parallel rise of mitochondrial mass and activity, suggesting that the amount and activity of organelles change remarkably during oogenesis. Figure 1. shows the distribution of hsp60 protein, detected by immunofluorescence analysis (A), the mitochondrial and genomic DNA, after in vivo incubation with PicoGreen probe (B) and the merge of green and red fluorescence signal, respectively due to mitochondrial mass and activity, after in vivo incubation with Mitotraker Green and Orange (C). The size of the oocytes reported is 80 \ub5m. Results suggest that mitochondria are actively duplicating and that mitochondrial DNA is replicating during the different oogenesis phases. It is noteworthy that around the germinal vesicle, especially in the larger oocytes, next to the germinal vesicle breakdown, the organelles are more active in oxygen consumption, probably due to the major energetic needing in this key moment of gametogenesis. [1] Wessel G.M., Voronina E., and Brooks J.M. (2004) Obtaining and handling echinoderm oocytes. In \u201cMethods in Cell Biology\u201d, Elsevier. Vol.74, Chapter 5, pp. 87-114. [2] Matsumoto L., Kasamatsu H., Pik\ub4o L. and Vinograd J. (1974) Mitochondrial DNA replication in sea urchin oocytes. J. Cell Biol. 63: 146\u2013159. [3] Morici G., Agnello M., Spagnolo F., Roccheri M.C., Di Liegro C.M. and Rinaldi A.M. (2007) Confocal microscopy study of the distribution, content and activity of mitochondria during Paracentrotus lividus development. Journal of Microscopy. 228: 165-173. [4] Agnello M., Morici G., Rinaldi A.M. (2008) A method for measuring mitochondrial mass and activity . Cytotechnology. 56: 145-149. Maria Carmela Roccheri: Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche. Universit\ue0 degli Studi di Palermo, Viale delle Scienze Ed.16, Palermo, Italy; tel: 09123897414; e-mail: [email protected]
    • …
    corecore