102 research outputs found

    Screening, identification, and antibiotic activity of secondary metabolites of Penicillium sp. LPB2019K3-2 isolated from endemic amphipods of Lake Baikal

    Get PDF
    This study aimed to assess the influence of nutrient media content on the production of antibiotics and the ability of water fungi isolated from lake Baikal to synthesize novel natural products. Interest in this topic stems from the high demand for new drugs, and studies are carried out via the screening of new natural products with biological activity produced by unstudied or extremophilic microorganisms. For this study, a strain of Penicillium sp. was isolated from endemic Baikal phytophagous amphipod species. Here, we identified natural products using the following classical assays: biotechnological cultivation, MALDI identification of the strain, natural product extraction, antimicrobial activity determination, and modern methods such as HPLC-MS for the dereplication and description of natural products. It was found that many detected metabolites were not included in the most extensive database. Most of the identified metabolites were characterized by their biological activity and demonstrated antibiotic activity against model Gram-positive and Gram-negative bacteria. The isolated strain of water fungus produced penicolinate B, meleagrin A, austinoneol A, andrastin A, and other natural products. Additionally, we show that the synthesis of low-molecular-weight natural products depends on the composition of the microbiological nutrient media used for cultivation. Thus, although the golden age of antibiotics ended many years ago and microscopic fungi are well studied producers of known antibiotics, the water fungi of the Lake Baikal ecosystem possess great potential in the search for new natural products for the development of new drugs. These natural products can become new pharmaceuticals and can be used in therapy to treat new diseases such as SARS, MERS, H5N1, etc

    FIRST REPORT ON TRUFFLE-INHABITING FUNGI AND METAGENOMIC COMMUNITIES OF TUBER AESTIVUM COLLECTED IN RUSSIA

    Get PDF
    Truffles are one of the least studied groups of fungi in terms of their biological and biotechnological aspects. This study aimed to isolate truffle-inhabiting fungi and assess the metagenomic communities of the most common Russian summer truffle, Tuber aestivum. This study is the first to characterize the biodiversity of prokaryotic and eukaryotic organisms living in the truffle T. aestivum using molecular analysis and sequencing. Plant pathogens involved in a symbiotic relationship with truffles were identified by sequencing the hypervariable fragments of the 16S rRNA and 18S rRNA genes. In addition, some strains of fungal symbionts and likely pathogens were isolated and recognized for the first time from the truffles. This study also compared and characterized the general diversity and distribution of microbial taxa of T. aestivum collected in Russia and Europe. The results revealed that the Russian and European truffle study materials demonstrated high similarity. In addition to the truffles, representatives of bacteria, fungi, and protists were found in the fruiting bodies. Many of these prokaryotic and eukaryotic species inhabiting truffles might influence them, help them form mycorrhizae with trees, and regulate biological processes. Thus, truffles are interesting and promising sources for modern biotechnological and agricultural studies

    Immunohistochemical and transcriptional expression of Matrix Metalloproteinases in full-term human umbilical cord and Human Umbilical Vein Endothelial Cells

    Get PDF
    Matrix metalloproteinases (MMPs) are extracellular zinc-dependent endopeptidases involved in the degradation and remodelling of extracellular matrix in physiological and pathological processes. MMPs also have a role on cell proliferation, migration, differentiation, angiogenesis and apoptosis. Umbilical cord is a special organ subjected to many changes during pre-natal life and whose cells can maintain a certain degree of plasticity also in post-natal period; for example recently they have been used as a source of stem cells. In this work we investigated the expression of MMPs in human umbilical cord and Human Umbilical Vein Endothelial Cells (HUVEC) though immunohistochemistry, RT-PCR and gelatin zymography. MMP-2 protein is expressed in the amniotic epithelium of human umbilical cord and in few sub-epithelial fibroblasts, while MMP-3 and MMP-10 only in the umbilical epithelium. MMP-8, MMP-9 and MMP-13 immunoreactivity is localised in the epithelium and in Wharton\u2019s jelly mesenchymal cells. Immunocytochemistry also revealed protein expression for MMP-2, 3, 8, 9 and 10 in cultured HUVEC. In agreement with immunohistochemical data, RT-PCR analysis performed on samples of whole umbilical cord confirmed the transcriptional expression for the genes encoding all the six matrix metalloproteinases investigated, while in HUVEC only the expression of MMP-2, 3, 9, 10 and 13 mRNAs was detected. Gelatin zymograpgy showed a clear MMP-2 and MMP-9 enzymatic activity in the conditioned medium of HUVEC at different culture passages, suggesting that HUVEC secrete gelatinases, that afterwards undergo extracellular activation, and this ability is not affected by passage number

    Folding of Matrix Metalloproteinase-2 Prevents Endogenous Generation of MHC Class-I Restricted Epitope

    Get PDF
    BACKGROUND: We previously demonstrated that the matrix metalloproteinase-2 (MMP-2) contained an antigenic peptide recognized by a CD8 T cell clone in the HLA-A*0201 context. The presentation of this peptide on class I molecules by human melanoma cells required a cross-presentation mechanism. Surprisingly, the classical endogenous processing pathway did not process this MMP-2 epitope. METHODOLOGY/PRINCIPAL FINDINGS: By PCR directed mutagenesis we showed that disruption of a single disulfide bond induced MMP-2 epitope presentation. By Pulse-Chase experiment, we demonstrated that disulfide bonds stabilized MMP-2 and impeded its degradation. Finally, using drugs, we documented that mutated MMP-2 epitope presentation used the proteasome and retrotranslocation complex. CONCLUSIONS/SIGNIFICANCE: These data appear crucial to us since they established the existence of a new inhibitory mechanism for the generation of a T cell epitope. In spite of MMP-2 classified as a self-antigen, the fact that cross-presentation is the only way to present this MMP-2 epitope underlines the importance to target this type of antigen in immunotherapy protocols

    Measurement of the J/ψ pair production cross-section in pp collisions at s=13 \sqrt{s}=13 TeV

    Get PDF
    The production cross-section of J/ψ pairs is measured using a data sample of pp collisions collected by the LHCb experiment at a centre-of-mass energy of s=13 \sqrt{s}=13 TeV, corresponding to an integrated luminosity of 279 ±11 pb1^{−1}. The measurement is performed for J/ψ mesons with a transverse momentum of less than 10 GeV/c in the rapidity range 2.0 < y < 4.5. The production cross-section is measured to be 15.2 ± 1.0 ± 0.9 nb. The first uncertainty is statistical, and the second is systematic. The differential cross-sections as functions of several kinematic variables of the J/ψ pair are measured and compared to theoretical predictions.The production cross-section of J/ψJ/\psi pairs is measured using a data sample of pppp collisions collected by the LHCb experiment at a centre-of-mass energy of s=13TeV\sqrt{s} = 13 \,{\mathrm{TeV}}, corresponding to an integrated luminosity of 279±11pb1279 \pm 11 \,{\mathrm{pb^{-1}}}. The measurement is performed for J/ψJ/\psi mesons with a transverse momentum of less than 10GeV/c10 \,{\mathrm{GeV}}/c in the rapidity range 2.0<y<4.52.0<y<4.5. The production cross-section is measured to be 15.2±1.0±0.9nb15.2 \pm 1.0 \pm 0.9 \,{\mathrm{nb}}. The first uncertainty is statistical, and the second is systematic. The differential cross-sections as functions of several kinematic variables of the J/ψJ/\psi pair are measured and compared to theoretical predictions

    Subcellular localization and Egl-mediated transport of telomeric retrotransposon HeT-A ribonucleoprotein particles in the Drosophila germline and early embryogenesis.

    No full text
    The study of the telomeric complex in oogenesis and early development is important for understanding the mechanisms which maintain genome integrity. Telomeric transcripts are the key components of the telomeric complex and are essential for regulation of telomere function. We study the biogenesis of transcripts generated by the major Drosophila telomere repeat HeT-A in oogenesis and early development with disrupted telomeric repeat silencing. In wild type ovaries, HeT-A expression is downregulated by the Piwi-interacting RNAs (piRNAs). By repressing piRNA pathway, we show that overexpressed HeT-A transcripts interact with their product, RNA-binding protein Gag-HeT-A, forming ribonucleoprotein particles (RNPs) during oogenesis and early embryonic development. Moreover, during early stages of oogenesis, in the nuclei of dividing cystoblasts, HeT-A RNP form spherical structures, which supposedly represent the retrotransposition complexes participating in telomere elongation. During the later stages of oogenesis, abundant HeT-A RNP are detected in the cytoplasm and nuclei of the nurse cells, as well as in the cytoplasm of the oocyte. Further on, we demonstrate that HeT-A products co-localize with the transporter protein Egalitarian (Egl) both in wild type ovaries and upon piRNA loss. This finding suggests a role of Egl in the transportation of the HeT-A RNP to the oocyte using a dynein motor. Following germline piRNA depletion, abundant maternal HeT-A RNP interacts with Egl resulting in ectopic accumulation of Egl close to the centrosomes during the syncytial stage of embryogenesis. Given the essential role of Egl in the proper localization of numerous patterning mRNAs, we suggest that its abnormal localization likely leads to impaired embryonic axis specification typical for piRNA pathway mutants

    The Use of Baikal Psychrophilic Actinobacteria for Synthesis of Biologically Active Natural Products from Sawdust Waste

    No full text
    One of the relevant areas in microbiology and biotechnology is the study of microorganisms that induce the destruction of different materials, buildings, and machines and lead to negative effects. At the same time, the positive ecological effects of degradation can be explained by the detoxication of industrial and agricultural wastes, chemical substances, petroleum products, xenobiotics, pesticides, and other chemical pollutants. Many of these industrial wastes include hard-to-degrade components, such as lignocellulose or plastics. The biosynthesis of natural products based on the transformation of lignocellulosic wastes is of particular interest. One of the world’s unique ecosystems is presented by Lake Baikal. This ecosystem is characterized by the highest level of biodiversity, low temperatures, and a high purity of the water. Here, we studied the ability of several psychrophilic representatives of Baikal Actinobacteria to grow on sawdust wastes and transform them into bioactive natural products. Different strains of both widely spread genus of Actinobacteria and rare genera of Actinobacteria were tested. We used the LC-MS methods to show that Actinobacteria living in sawmill wastes can produce both known and novel natural products with antibiotic activity. We demonstrated that the type of sawmill wastes and their concentration influence the Actinobacteria biosynthetic potential. We have shown for the first time that the use of Baikal psychrophilic microorganisms as a factory for biodegradation is applicable for the transformation of lignocellulosic wastes. Thus, the development of techniques for screening novel natural products leads to an elaboration on the active ingredients for novel drugs

    The Use of Baikal Psychrophilic Actinobacteria for Synthesis of Biologically Active Natural Products from Sawdust Waste

    No full text
    One of the relevant areas in microbiology and biotechnology is the study of microorganisms that induce the destruction of different materials, buildings, and machines and lead to negative effects. At the same time, the positive ecological effects of degradation can be explained by the detoxication of industrial and agricultural wastes, chemical substances, petroleum products, xenobiotics, pesticides, and other chemical pollutants. Many of these industrial wastes include hard-to-degrade components, such as lignocellulose or plastics. The biosynthesis of natural products based on the transformation of lignocellulosic wastes is of particular interest. One of the world&rsquo;s unique ecosystems is presented by Lake Baikal. This ecosystem is characterized by the highest level of biodiversity, low temperatures, and a high purity of the water. Here, we studied the ability of several psychrophilic representatives of Baikal Actinobacteria to grow on sawdust wastes and transform them into bioactive natural products. Different strains of both widely spread genus of Actinobacteria and rare genera of Actinobacteria were tested. We used the LC-MS methods to show that Actinobacteria living in sawmill wastes can produce both known and novel natural products with antibiotic activity. We demonstrated that the type of sawmill wastes and their concentration influence the Actinobacteria biosynthetic potential. We have shown for the first time that the use of Baikal psychrophilic microorganisms as a factory for biodegradation is applicable for the transformation of lignocellulosic wastes. Thus, the development of techniques for screening novel natural products leads to an elaboration on the active ingredients for novel drugs

    Cultivable Actinobacteria First Found in Baikal Endemic Algae Is a New Source of Natural Products with Antibiotic Activity

    No full text
    Inadequate use of antibiotics has led to spread of microorganisms resistant to effective antimicrobial compounds for humans and animals. This study was aimed to isolate cultivable strains of actinobacteria associated with Baikal endemic alga Draparnaldioides baicalensis and estimate their antibiotic properties. During this study, we isolated both widespread and dominant strains related to the genus Streptomyces and representatives of the genera Saccharopolyspora, Nonomuraea, Rhodococcus, and Micromonospora. For the first time, actinobacteria belonging to the genera Nonomuraea and Saccharopolyspora were isolated from Baikal ecosystem. Also, it was the first time when actinobacteria of the genus Nonomuraea were isolated from freshwater algae. Some rare strains demonstrated activity inhibiting growth of bacteria and yeasts. Also, it has been shown that the strains associated with Baikal alga D. baicalensis are active against both Gram-positive and Gram-negative bacteria. According to this study and previously published materials, diversity of cultivable actinobacteria and rare strains isolated from D. baicalensis is comparable to that of cultivable actinobacteria previously isolated from plant sources of Lake Baikal. Also, it exceeds the cultivable actinobacteria diversity previously described for macroinvertebrates, water, or sediments of Lake Baikal. The large number of rare and active strains associated with the endemic alga D. baicalensis could be the promising sources for biopharmaceutical and biotechnological developments and discovery of new natural compounds
    corecore