7,826 research outputs found
Low sonic boom design and performance of a Mach 2.4/1.8 overland high speed civil transport
This paper describes the design features of a Douglas Mach 2.4/1.8 Low Sonic Boom High Speed Civil Transport (HSCT) configuration developed for NASA. The configuration is designed to fly over water at Mach 2.4 for highest productivity and economic worth, and fly over land at Mach 1.8 with reduced sonic boom loudness
Gundlach oscillations and Coulomb blockade of Co nano-islands on MgO/Mo(100) investigated by scanning tunneling spectroscopy at 300 K
Ultrathin MgO films on Mo(100) with a thickness up to 12 ML are studied by
scanning tunneling microscopy and spectroscopy at room temperature. The spatial
variation of the work function within the MgO film is mapped by field emission
resonance states (Gundlach oscillations) using dz/dU spectroscopy. We found
circular spots with significantly reduced work function (DeltaPhi=0.6 eV),
which are assigned to charged defects within the MgO film. On top of the MgO
films, small Co cluster are deposited with an average contact area of 4 nm^2.
These islands exhibit Coulomb oscillations in dI/dU spectra at room
temperature. Good agreement with orthodox theory is achieved showing variations
of the background charge Q_0 for islands at different positions, which are in
accordance with the work function differences determined by the Gundlach
oscillations.Comment: 7 pages, 3 figure
Scanning tunneling spectroscopy of a dilute two-dimensional electron system exhibiting Rashba spin splitting
Using scanning tunneling spectroscopy (STS) at 5 K in B-fields up to 7 T, we
investigate the local density of states of a two-dimensional electron system
(2DES) created by Cs adsorption on p-type InSb(110). The 2DES, which in
contrast to previous STS studies exhibits a 2D Fermi level, shows standing
waves at B = 0 T with corrugations decreasing with energy and with wave numbers
in accordance with theory. In magnetic field percolating drift states are
observed within the disorder broadened Landau levels. Due to the large electric
field perpendicular to the surface, a beating pattern of the Landau levels is
found and explained quantitatively by Rashba spin splitting within the lowest
2DES subband. The Rashba splitting does not contribute significantly to the
standing wave patterns in accordance with theory.Comment: 9 pages, 9 figures, submitted to Phys. Rev.
Global Classical Solutions of the Boltzmann Equation with Long-Range Interactions and Soft Potentials
In this work we prove global stability for the Boltzmann equation (1872) with
the physical collision kernels derived by Maxwell in 1866 for the full range of
inverse power intermolecular potentials, with . This
completes the work which we began in (arXiv:0912.0888v1). We more generally
cover collision kernels with parameters and satisfying
in arbitrary dimensions
with . Moreover, we prove rapid convergence as predicted by the
Boltzmann H-Theorem. When , we have exponential time decay
to the Maxwellian equilibrium states. When , our solutions
decay polynomially fast in time with any rate. These results are constructive.
Additionally, we prove sharp constructive upper and lower bounds for the
linearized collision operator in terms of a geometric fractional Sobolev norm;
we thus observe that a spectral gap exists only when , as
conjectured in Mouhot-Strain (2007).Comment: This file has not changed, but this work has been combined with
(arXiv:0912.0888v1), simplified and extended into a new preprint, please see
the updated version: arXiv:1011.5441v
Preferential antiferromagnetic coupling of vacancies in graphene on SiO_2: Electron spin resonance and scanning tunneling spectroscopy
Monolayer graphene grown by chemical vapor deposition and transferred to
SiO_2 is used to introduce vacancies by Ar^+ ion bombardment at a kinetic
energy of 50 eV. The density of defects visible in scanning tunneling
microscopy (STM) is considerably lower than the ion fluence implying that most
of the defects are single vacancies. The vacancies are characterized by
scanning tunneling spectroscopy (STS) on graphene and HOPG exhibiting a peak
close to the Fermi level. The peak persists after air exposure up to 180 min,
albeit getting broader. After air exposure for less than 60 min, electron spin
resonance (ESR) at 9.6 GHz is performed. For an ion flux of 10/nm^2, we find a
signal corresponding to a g-factor of 2.001-2.003 and a spin density of 1-2
spins/nm^2. The ESR signal consists of a mixture of a Gaussian and a Lorentzian
of equal weight exhibiting a width down to 0.17 mT, which, however, depends on
details of the sample preparation. The g-factor anisotropy is about 0.02%.
Temperature dependent measurements reveal antiferromagnetic correlations with a
Curie-Weiss temperature of -10 K. Albeit the electrical conductivity of
graphene is significantly reduced by ion bombardment, the spin resonance
induced change in conductivity is below 10^{-5}.Comment: 10 pages, 5 figures, discussion on STM images in the literature of
defects in graphene adde
Diffractive wave guiding of hot electrons by the Au (111) herringbone reconstruction
The surface potential of the herringbone reconstruction on Au(111) is known
to guide surface-state electrons along the potential channels. Surprisingly, we
find by scanning tunneling spectroscopy that hot electrons with kinetic
energies twenty times larger than the potential amplitude (38 meV) are still
guided. The efficiency even increases with kinetic energy, which is reproduced
by a tight binding calculation taking the known reconstruction potential and
strain into account. The guiding is explained by diffraction at the
inhomogeneous electrostatic potential and strain distribution provided by the
reconstruction.Comment: 10 pages, 9 figure
Probing electron-electron interaction in quantum Hall systems with scanning tunneling spectroscopy
Using low-temperature scanning tunneling spectroscopy applied to the
Cs-induced two-dimensional electron system (2DES) on p-type InSb(110), we probe
electron-electron interaction effects in the quantum Hall regime. The 2DES is
decoupled from p-doped bulk states and exhibits spreading resistance within the
insulating quantum Hall phases. In quantitative agreement with calculations we
find an exchange enhancement of the spin splitting. Moreover, we observe that
both the spatially averaged as well as the local density of states feature a
characteristic Coulomb gap at the Fermi level. These results show that
electron-electron interaction effects can be probed down to a resolution below
all relevant length scales.Comment: supplementary movie in ancillary file
- …