46 research outputs found

    Stochastic Analysis of a Mammalian Circadian Clock Model: Small Protein Number Effects

    Get PDF
    The circadian clock, responsible for coordinating organism function with daily and seasonal changes in the day-night cycle, is controlled by a complex protein network that constitutes a robust biochemical oscillator. Deterministic ordinary differential equation models have been used extensively to model the behavior of these central clocks. However, due to the small number of proteins involved in the circadian oscillations, mathematical models that track stochastic variations in the numbers of clock proteins may reveal more complex and biologically relevant behaviors. In this paper, we compare the response of a robust yet detailed deterministic model for the mammalian circadian clock with its corresponding stochastic version that takes into account low protein number noise. We then use signal analysis techniques in order to examine differences in behavior among components of the stochastic system oscillator. This approach reveals differences in the system response between the stochastic and deterministic model and also allows us to extend bifurcation analysis into the stochastic domain. From our analysis of the unfitted stochastic model, we propose novel explanations of some previous experimental results

    Protocol for performing pooled CRISPR-Cas9 loss-of-function screens

    Get PDF
    Phenotypic screens involving pooled CRISPR-Cas9 libraries offer a powerful, rapid yet affordable approach to evaluate gene functions on a global scale. Here, we present a protocol for performing pooled CRISPR-Cas9 loss-of-function screens to identify genetic modifiers using either fluorescence-based or cell death phenotypic readouts. We describe steps for designing and amplifying the library and generating and screening cells. We then detail deep sequencing and statistical analysis using cas9 High Throughput maximum Likelihood Estimator. For complete details on the use and execution of this protocol, please refer to Bersuker et al. (2019),1 Li et al. (2022),2 and Roberts et al. (2022).3

    A CRISPR-based screen for Hedgehog signaling provides insights into ciliary function and ciliopathies.

    Get PDF
    Primary cilia organize Hedgehog signaling and shape embryonic development, and their dysregulation is the unifying cause of ciliopathies. We conducted a functional genomic screen for Hedgehog signaling by engineering antibiotic-based selection of Hedgehog-responsive cells and applying genome-wide CRISPR-mediated gene disruption. The screen can robustly identify factors required for ciliary signaling with few false positives or false negatives. Characterization of hit genes uncovered novel components of several ciliary structures, including a protein complex that contains δ-tubulin and ε-tubulin and is required for centriole maintenance. The screen also provides an unbiased tool for classifying ciliopathies and showed that many congenital heart disorders are caused by loss of ciliary signaling. Collectively, our study enables a systematic analysis of ciliary function and of ciliopathies, and also defines a versatile platform for dissecting signaling pathways through CRISPR-based screening

    The N⁶-methyladenosine methyltransferase METTL16 enables erythropoiesis through safeguarding genome integrity

    Get PDF
    RNA修飾による赤血球造血制御機構を解明 --RNAのメチル化がDNA修復に必要--. 京都大学プレスリリース. 2022-11-10.Mice show METTL in DNA blood repair: RNA methylation shows important role in erythropoiesis. 京都大学プレスリリース. 2022-11-25.During erythroid differentiation, the maintenance of genome integrity is key for the success of multiple rounds of cell division. However, molecular mechanisms coordinating the expression of DNA repair machinery in erythroid progenitors are poorly understood. Here, we discover that an RNA N⁶-methyladenosine (m⁶A) methyltransferase, METTL16, plays an essential role in proper erythropoiesis by safeguarding genome integrity via the control of DNA-repair-related genes. METTL16-deficient erythroblasts exhibit defective differentiation capacity, DNA damage and activation of the apoptotic program. Mechanistically, METTL16 controls m⁶A deposition at the structured motifs in DNA-repair-related transcripts including Brca2 and Fancm mRNAs, thereby upregulating their expression. Furthermore, a pairwise CRISPRi screen revealed that the MTR4-nuclear RNA exosome complex is involved in the regulation of METTL16 substrate mRNAs in erythroblasts. Collectively, our study uncovers that METTL16 and the MTR4-nuclear RNA exosome act as essential regulatory machinery to maintain genome integrity and erythropoiesis

    CRISPR-Cas9 screens in human cells and primary neurons identify modifiers of C9ORF72 dipeptide-repeat-protein toxicity.

    Get PDF
    Hexanucleotide-repeat expansions in the C9ORF72 gene are the most common cause of amyotrophic lateral sclerosis and frontotemporal dementia (c9ALS/FTD). The nucleotide-repeat expansions are translated into dipeptide-repeat (DPR) proteins, which are aggregation prone and may contribute to neurodegeneration. We used the CRISPR-Cas9 system to perform genome-wide gene-knockout screens for suppressors and enhancers of C9ORF72 DPR toxicity in human cells. We validated hits by performing secondary CRISPR-Cas9 screens in primary mouse neurons. We uncovered potent modifiers of DPR toxicity whose gene products function in nucleocytoplasmic transport, the endoplasmic reticulum (ER), proteasome, RNA-processing pathways, and chromatin modification. One modifier, TMX2, modulated the ER-stress signature elicited by C9ORF72 DPRs in neurons and improved survival of human induced motor neurons from patients with C9ORF72 ALS. Together, our results demonstrate the promise of CRISPR-Cas9 screens in defining mechanisms of neurodegenerative diseases

    Structure and dynamics of the pan-genome of Streptococcus pneumoniae and closely related species

    Get PDF
    Background Streptococcus pneumoniae is one of the most important causes of microbial diseases in humans. The genomes of 44 diverse strains of S. pneumoniae were analyzed and compared with strains of non-pathogenic streptococci of the Mitis group. Results Despite evidence of extensive recombination, the S. pneumoniae phylogenetic tree revealed six major lineages. With the exception of serotype 1, the tree correlated poorly with capsular serotype, geographical site of isolation and disease outcome. The distribution of dispensable genes, genes present in not all, but more than one strain, was consistent with phylogeny, although horizontal gene transfer events attenuated this correlation in the case of ancient lineages. Homologous recombination, involving short stretches of DNA, was the dominant 13 evolutionary process of the core genome of S. pneumoniae. Genetic exchange occurred both within and across the borders of the species, and S. mitis was the main reservoir of genetic diversity of S. pneumoniae. The pan-genome size of S. pneumoniae increased logarithmically with the number of strains and linearly with the number of polymorphic sites of the sampled genomes, suggesting that acquired genes accumulate proportionately to the age of clones. Most genes associated with pathogenicity were shared by all S. pneumoniae strains, but were also present in S. mitis, S. oralis and S. infantis, indicating that these genes are not sufficient to determine virulence. Conclusion Genetic exchange with related species sharing the same ecological niche is the main mechanism of evolution of S. pneumoniae. The open pan genome guarantees the species a quick and economical response to diverse environments

    A Two-tiered functional screen identifies herpesviral transcriptional modifiers and their essential domains.

    No full text
    While traditional methods for studying large DNA viruses allow the creation of individual mutants, CRISPR/Cas9 can be used to rapidly create thousands of mutant dsDNA viruses in parallel, enabling the pooled screening of entire viral genomes. Here, we applied this approach to Kaposi's sarcoma-associated herpesvirus (KSHV) by designing a sgRNA library containing all possible ~22,000 guides targeting the 154 kilobase viral genome, corresponding to one cut site approximately every 8 base pairs. We used the library to profile viral sequences involved in transcriptional activation of late genes, whose regulation involves several well characterized features including dependence on viral DNA replication and a known set of viral transcriptional activators. Upon phenotyping all possible Cas9-targeted viruses for transcription of KSHV late genes we recovered these established regulators and identified a new required factor (ORF46), highlighting the utility of the screening pipeline. By performing targeted deep sequencing of the viral genome to distinguish between knock-out and in-frame alleles created by Cas9, we identify the DNA binding but not catalytic domain of ORF46 to be required for viral DNA replication and thus late gene expression. Our pooled Cas9 tiling screen followed by targeted deep viral sequencing represents a two-tiered screening paradigm that may be widely applicable to dsDNA viruses
    corecore