2 research outputs found

    Scaling Near-Surface Remote Sensing To Calibrate And Validate Satellite Monitoring Of Grassland Phenology

    Get PDF
    Phenology across the U.S. Great Plains has been modeled at a variety of field sites and spatial scales. However, combining these spatial scales has never been accomplished before, and has never been done across multiple field locations. We modeled phenocam Vegetation Indices (VIs) across the Great Plains Region. We used coupled satellite imagery that has been aligned spectrally, for each imagery band to align with one another across the phenocam locations. With this we predicted the phenocam VIs for each year over the six locations.Using our method of coupling the phenocam VIs and the meteorological data we predicted 38 years of phenocam VIs. This resulted in a coupled dataset for each phenocam site across the four VIs. Using the coupled datasets, we were able to predict the phenocam VIs, and examine how they would change over the 38 years of data. While imagery was not available for modeling the 38 years of weather data, we found weather data could act as an acceptable proxy. This means we were able to predict 38 years of VIs using weather data. A main assumption with this method, it that no major changes in the vegetation community took place in the 33 years before the imagery. If a large change did take place, it would be missed because of the data lacking to represent it. Using the phenocam and satellite imagery we were able to predict phenocam GCC, VCI, NDVI, and EVI2 and model them over a five-year period. This modeled six years of phenocam imagery across the Great Plains region and attempted to predict the phenocam VIs for each pixel of the satellite imagery. The primary challenge of this method is aggregating grassland predicted VIs with cropland. This region is dominated by cropland and managed grasslands. In many cases the phenology signal is likely driven by land management decisions, and not purely by vegetation growth characteristics. Future models that take this into account may provide a more accurate model for the region

    Detection of Shelterbelt Density Change Using Historic APFO and NAIP Aerial Imagery

    Get PDF
    Grand Forks County, North Dakota, boasts the highest concentration of shelterbelts in the World. As trees age and reach their lifespan limits, renovations should have taken place with new trees being planted. However, in recent years, the rate of tree removal is thought to exceed the rate of replanting, which can result in a net loss of shelterbelts. Through manual digitization and geographic object-based image analysis (GEOBIA), we mapped shelterbelt densities in the Grand Forks County using historical and contemporary aerial photography, and estimated actual changes in density over 54 years. Our results showed a doubling in shelterbelt densities from 1962 to 2014, with an increase of 6402 m2/km2 over the 52 years (or 123 m2/km2/year). From 2014 to 2016, we measured 1,040,178 m2 of shelterbelt areas removed from the county, creating a density loss of −157 m2/km2/year. The total change over two years was relatively small compared with that seen over the previous 52 years. However, the fact that the rate of shelterbelt planting has slowed, and more removal is occurring, should be of concern for an increased risk of wind erosion, similar to that experienced in Midwestern U.S. during the 1930s. The reduction of shelterbelt density is likely related to changes in farming practices and a decline in the Conservation Reserve Program, resulting from the increased returns of growing other row crops. To encourage shelterbelt planting as a conservation practice, additional guidelines and financial support should be considered to balance the tradeoff between soil erosion and agricultural intensification
    corecore