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ABSTRACT 

Phenology across the U.S. Great Plains has been modeled at a variety of field sites 

and spatial scales. However, combining these spatial scales has never been accomplished 

before, and has never been done across multiple field locations. We modeled phenocam 

Vegetation Indices (VIs) across the Great Plains Region. We used coupled satellite imagery 

that has been aligned spectrally, for each imagery band to align with one another across the 

phenocam locations. With this we predicted the phenocam VIs for each year over the six 

locations. 

Using our method of coupling the phenocam VIs and the meteorological data we 

predicted 38 years of phenocam VIs. This resulted in a coupled dataset for each phenocam 

site across the four VIs. Using the coupled datasets, we were able to predict the phenocam 

VIs, and examine how they would change over the 38 years of data. While imagery was not 

available for modeling the 38 years of weather data, we found weather data could act as an 

acceptable proxy. This means we were able to predict 38 years of VIs using weather data. A 

main assumption with this method, it that no major changes in the vegetation community 

took place in the 33 years before the imagery. If a large change did take place, it would be 

missed because of the data lacking to represent it.    

Using the phenocam and satellite imagery we were able to predict phenocam GCC, 

VCI, NDVI, and EVI2 and model them over a five-year period. This modeled six years of 

phenocam imagery across the Great Plains region and attempted to predict the phenocam VIs 

for each pixel of the satellite imagery. The primary challenge of this method is aggregating 
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grassland predicted VIs with cropland. This region is dominated by cropland and managed 

grasslands. In many cases the phenology signal is likely driven by land management 

decisions, and not purely by vegetation growth characteristics. Future models that take this 

into account may provide a more accurate model for the region.  
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CHAPTER I 

I. INTRODUCTION 

1.1 Background 

Phenology is the study of reoccurring biological events or life stages, with particular 

interest in their timing and relationship with weather and climate (M.D. Schwartz, 2013). The 

reoccurrence of biological events can be influenced by both abiotic and biotic factors, and the 

interactions between them (A. D. Richardson, Keenan, et al., 2013). An understanding of 

phenology is thought to be as old as the existence of early civilizations, particularly those that 

understood the seasonality of crop growth (M.D. Schwartz, 2013). In Japan, starting in 705 

AD there is a written record marking the beginning of cherry flowering in the spring 

(Menzel, 2013). In North America, the Smithsonian Institution started a phenology network 

in 1851, observing species of plants, birds and insects across 33 states (Mark D. Schwartz et 

al., 2013).  

Phenology of vegetation is primarily concerned with the life cycle of plants 

throughout the growing season. This includes growth through photosynthesis in the spring 

time and the onset of senescence in the fall (Morisette et al., 2009). The link between climate 

and plant phenology has been well established with environmental factors such as 

temperature, photoperiod and precipitation acting as primary forcing to the onset of plant 

growth and senescence (Elsa E. Cleland et al., 2007; Kathuroju et al., 2007; Menzel et al., 

2005; Morisette et al., 2009; A. D. Richardson, Keenan, et al., 2013; Mark D. Schwartz et al., 
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2006). The relationship between plant phenology and climate provides a strong foundation 

for long-term monitoring of vegetation phenology as a way to track plant and ecosystem 

responses to global climate change (Elsa E. Cleland et al., 2007). For example, since 

vegetation is a primary producer, monitoring of vegetation can provide information on 

organisms at higher trophic levels, such as how early onset flowering requires pollinator 

insects to adjust their life cycles (Mark D. Schwartz et al., 2006). Monitoring of vegetation 

phenology can also detect unexpected feedback mechanisms, for example while global 

climate change in the northern hemisphere might be triggering an earlier start of season, and 

is expected to lengthen the growing season (Mark D. Schwartz et al., 2006). Earlier spring 

vegetation growth can reduce soil moisture causing drought and early onset senescence, 

which in turn shortens the total growing season (Toomey et al., 2015). Feedback mechanisms 

like this are still poorly understood, and an area where further research is needed (A. D. 

Richardson, Keenan, et al., 2013).  

Monitoring of vegetation phenology takes place on many spatial scales. While 

phenology monitoring has been done at a local single-species scale historically, for example 

the cherry flowering in Japan (Menzel, 2013), more recently an area of research within the 

field of remote sensing called land surface phenology (LSP) has permitted much larger 

geographic areas to be monitored using satellite sensors (G. Henebry & Su, 1995). Broad-

scale LSP has been occurring since the 1980s with the deployment of the Advanced Very 

High-Resolution Radiometer (AVHRR) with a 1km spatial resolution. This has been 

followed by the deployments of the Moderate Resolution Imaging Spectroradiometer 
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(MODIS) in 1999 and the Visible Infrared Imager/Radiometer Suite (VIIRS) in 2017 (Reed 

et al., 2009; X. Zhang, Liu, et al., 2017). Also the U.S. Geological Survey (USGS) Landsat 

satellite series with a spatial resolution of 30 m to 60 m provides imagery dating back to the 

1970s and has been used in several phenology studies (Baumann et al., 2017; Jeremy I. 

Fisher & Mustard, 2007; Jeremy Isaac Fisher et al., 2006; Y. Liu et al., 2017; X. Zhang, 

Wang, et al., 2017). The more recent launch of the Sentinel-2 satellites in 2015 - 2017 with a 

10 m to 60 m spatial resolution has already proved useful for LSP research (Vrieling et al., 

2018). Since satellite-based LSP does not necessarily contain the spectral information for a 

single species, it is assumed that each pixel or grid cell contains the aggregate spectral 

information for a variety of plants with an ecosystem (G. Henebry & Su, 1995; Vrieling et 

al., 2018). This means that LSP requires a conceptual shift away from historical phenology 

research focused on a single species to a focus on the seasonality and characteristics of 

landscape surface reflectance (G. Henebry & Su, 1995). 

Near-surface remote sensing (NSRS) is an even more recent approach to phenological 

research that is helping to bridge the gap between historical observer-based phenological data 

and LSP (A. Richardson & Braswell, 2009). NSRS includes any remote sensing instrument 

that can record electromagnetic radiation at an ecosystem level, and is typically mounted to a 

permanent structure such as a tower, mast or building and can include radiometric or other 

imaging sensors (A. D. Richardson, Klosterman, et al., 2013). While radiometers have been 

used to study the reflective properties of natural surfaces for many years (Coulson et al., 

1965), a more recent technological shift is the use of digital web-enabled cameras to act as 
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imaging sensors for phenological research (A. D. Richardson et al., 2007). Web-enabled 

cameras that have been configured to record near-continuous imagery of vegetation are 

called “phenocams” (T. B. Brown et al., 2016). However, this term originated from the 

digital cameras specifically used for the PhenoCam Project (https://phenocam.sr.unh.edu). 

Phenocams provide two main benefits that are often difficult with other phenology 

observations. First, they can provide information about a small footprint or area of an 

ecosystem but still provide the aggregated pixel information used in LSP. Second, they 

provide continuous monitoring of an ecosystem and are less effected by environmental 

factors such as cloud cover that will obstruct satellite imagery, or weather conditions that 

may stop an individual from collecting observational data (A. D. Richardson, Klosterman, et 

al., 2013). Using phenocam data we can examine the characteristics and relationships of 

different environmental drivers on the vegetation phenology (T. B. Brown et al., 2016). This 

is achieved using the phenocams’ digital repeat photography and either visual interpretation 

by an individual (Kosmala et al., 2016), or quantitative analysis with the use of a vegetation 

index (VI) (Petach et al., 2014). 

Phenocams have proved to be an invaluable resource for improving our 

understanding of ecosystem scale LSP (T. B. Brown et al., 2016). However, further 

improvements in the way phenocam data are calibrated and standardized is needed (A. D. 

Richardson, Klosterman, et al., 2013). Changing illumination conditions can cause variation 

in derived Vegetation Indices (VIs), and developing a better way to calibrate and remove this 

noise would be beneficial (Petach et al., 2014). The green chromatic coordinate (GCC) VI 
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has been used by several studies derived from phenocam imagery (L. A. Brown et al., 2017; 

Browning et al., 2017; Keenan et al., 2014; Morisette et al., 2009; Sonnentag et al., 2012), 

while only a few have used the Normalized Difference Vegetation Index (NDVI) (Filippa et 

al., 2018; Klosterman et al., 2014; Petach et al., 2014). This is likely because NDVI requires 

the phenocam to record infrared radiation, which is usually secondary to imagery with blue, 

green, and red radiation (A. D. Richardson, Klosterman, et al., 2013). This is likely because 

not all phenocams have the ability to record infrared radiation, and those that do require 

addition data processing to extract and calibrate the infrared imagery to make it compatible 

with the color imagery (Petach et al., 2014). Improving the use of infrared from phenocam 

imagery may improve our ability to detect vegetation health and stress (Petach et al., 2014), 

as well as improve our ability to compare the imagery to satellite-derived NDVI (Filippa et 

al., 2018). While NDVI and GCC indices are both measures of vegetation greenness, they do 

not always posses strong correlation for different phenology transitions and across ecosystem 

types. Better understanding of the physiological processes associated with variation between 

these two indices is needed (Filippa et al., 2018; Morisette et al., 2009).  With this study, we 

hope to improve upon the calibration and standardization issues currently facing phenocam 

imagery. Improving the ways phenocam imagery is calibrated and compared with satellite 

derived VIs will bring great value to the use of phenocams for monitoring phenology, and 

environmental change (Filippa et al., 2018; Petach et al., 2014). Also developing methods to 

identify primary environmental forcing that are driving change in phenology over the 
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growing season will help improve the usefulness of co-located weather sensors for ecosystem 

modeling (T. B. Brown et al., 2016). 

 

1.2 Literature Review 

Vegetation phenology started with individuals monitoring and recording biological 

events for various flora, for example the cherry tree flowering recorded in Japan starting in 

705 AD (Menzel, 2013). In the UK the Marsham family recorded the flowering date of wood 

anemone starting in 1736 until 1958, representing one of the longest records kept by amateur 

naturalists (Sparks & Menzel, 2002). More recently, researchers in North America have 

recorded timing of bud burst for cloned lilac and honeysuckle plants starting in the 1950s 

(Mark D. Schwartz, 2003). The National Oceanic and Atmospheric Administration (NOAA) 

created a network with the two plants in 1967, recording several phenophases of leaf opening 

and blooming for the lilac, and nine different phenophases for the honeysuckle (Lieth, 1974). 

Using these observations an advancing of spring green up has been detected in the northern 

hemisphere (Mark D. Schwartz et al., 2006). Schwartz (1994) also suggested calibrating 

observations of lilac and honeysuckle phenophases with spring green up detected from 

satellite derived NDVI. Even today observations of these two plant species are still used by 

the U.S. National Phenology Network to track blooming and leaf-out on an annual basis, to 

detect variations in seasonal phenology, such as the timing of spring green up across the U.S. 

(USA National phenology Network, 2018). 
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Phenology is often carried out as a hobby, or pastime of naturalists and citizen 

scientists (A. D. Richardson, Keenan, et al., 2013). The recognition that phenological data are 

a valuable resource for understanding the response of ecosystems to climate change (Fig. 1) 

have made them desirable for use in research and modeling (Sparks & Menzel, 2002). 

Phenology may even be the simplest way to monitor ecosystem and species change in 

response to climate change (The Intergovernmental Panel on Climate Change, 2007). 

 
Fig. 1: Web of connections between phenology and the environment. Weather and climate 
influence vegetation phenology, but feedback mechanisms exist through nutrient cycling and 
atmospheric interactions. The underlined terms represent an ecosystem service with 
management or economic benefits. Figure originally published in Morisette et al. (2009). 

 

1.2.1 Weather and Climate 

Recent understanding of the feedback mechanisms between vegetation phenology and 

climate has brought recognition to the important value of the phenological records that have 
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been kept for many centuries (Sparks & Menzel, 2002). Seen in Fig. 1, phenology is not only 

influenced by changes in the weather and climate (Rundquist & Harrington, 2000), but has 

recognized feedback mechanisms that can influence atmospheric conditions (Morisette et al., 

2009). Vegetation is able to influence climate through mechanisms such as albedo, surface 

roughness length, canopy conductance, water and energy fluxes, and photosynthesis and CO2 

fluxes (A. D. Richardson, Keenan, et al., 2013).  

The albedo of an ecosystem is the proportion of incident solar radiation that is 

reflected. Any vegetation on the surface will have a direct effect on the albedo, and this will 

in turn affect the energy budget and the climate (Pitman, 2003). A good example of this is the 

mathematical model known as Daisyworld, in which a biosphere exists with only two 

species, black and white daisies (A. J. Watson & Lovelock, 1983). The albedo of the white 

daisies is greater than that of the black daisies, and the daisies can self-regulate their local 

temperature so that they can survive under a greater range of incoming solar radiation then if 

they were passive actors unable to modify the surrounding climate. While the model is 

simplified compared with the complexities found in the natural world, it is still able to show 

us how organisms can feedback to their surrounding environment, and have an effect on it 

(Lenton & Lovelock, 2001). 

Photosynthesis and the ability of vegetation to uptake CO2 and sequester carbon into 

organic matter is a very important feedback mechanism for affecting global temperature (A. 

D. Richardson, Keenan, et al., 2013). Measurements of CO2 flux from the biosphere became 

technologically feasible starting in the 1980s with some of the first measurements taken 
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using the eddy covariance method. Since this time, we have been able to measure the uptake 

and respiration of CO2 from the surrounding ecosystem and establish networks of 

measurements (Baldocchi, 2008). Using flux networks it has been estimated that the global 

terrestrial vegetation is able to remove 2 - 4 Pg. (2 - 4 trillion kg, or 4.4 - 8.8 trillion lbs.) of 

carbon from the atmosphere annually (A. D. Richardson, Keenan, et al., 2013). The expected 

increase in growing season brought on by increased atmospheric CO2 (Mark D. Schwartz et 

al., 2006)  means that vegetation will have more time to use photosynthesis and remove 

carbon from the atmosphere, creating a negative feedback loop (Baldocchi, 2008). However, 

this might not be the case in all regions, such as locations where drought caused by less 

spring soil moisture results in a shortening of the growing season (Toomey et al., 2015). 

Exceptions such as this demonstrate how important it is for a diverse array of ecosystems to 

by monitored to provide a better understanding of how vegetation phenology will change 

under future climate conditions. 

1.2.2 Grassland Phenology 

Grasslands cover approximately 59 million km2 of the Earth surface (Hufkens et al., 

2016) making up between 10 and 30 percent of the global carbon stock (Scurlock & Hall, 

1998), this makes grasslands the second largest carbon sink after forests (Anderson, 1991). In 

North America, the Great Plains cover approximately 2.9 million km2 within a gradient of 

tall and short grass prairie. However, the conversion of grassland to cropland has drastically 

reduced the remaining native prairie ecosystems. In 2018, it is estimated that only half of 

these grassland ecosystems remain, with 87 percent of them located on poor and marginal 
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quality soils (World Wildlife Fund, 2018). The variation within the Great Plains creates a 

variety of community types typically dominated by C3 grasses in the north and east having 

more precipitation and cooler temperatures, and C4 grasses in the south and west having 

lower precipitation and higher temperatures (Petrie et al., 2016). Along with a large amount 

of spatial variability, grasslands are also characterized with high amounts of temporal 

variability (Flanagan & Adkinson, 2011). This means that climate change induced shifts in 

grassland phenology will likely only be detectable using long-term monitoring over several 

years to decades (G. M. Henebry, 2013).  

Across the northern hemisphere the onset of spring is predicted to occur earlier under 

the warmer conditions predicted from climate change (Mark D. Schwartz et al., 2006). 

However, a controlled test of grassland phenology using plants grown with a warmer 

temperature, elevated CO2 increased nitrogen, and increased precipitation has shown an array 

of responses that were not all anticipated. Additions of CO2 had a delay on spring greenness 

while increased nitrogen slowed down the growth acceleration. Precipitation had no effect 

suggesting it was not a limiting factor for the controlled plants, while increased temperature 

was the only factor to have the expected outcome, causing plants to flower earlier by 2-5 

days (E. E. Cleland et al., 2006). Field observations of arid grasslands using both phenocams 

as well as satellite imagery are also in agreement that warmer temperatures bring an earlier 

start of season to the grasslands. However, in an arid environment precipitation has been 

found to affect the recorded vegetation indices, even causing a second peak greenness in the 

growing season after a large precipitation event (Browning et al., 2017). Even though 
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precipitation may have a small influence on grassland phenology, modeled scenarios under 

future climate conditions still suggest that North America will see an increase in both the 

length of the growing season as well as the productivity of grasslands. This is because the 

model grasslands are expected to become more efficient in retaining moisture under higher 

CO2 levels allowing for a more efficient use of water and a reduction in the amount of water 

lost in transpiration (Hufkens et al., 2016). This suggests that precipitation may need to fall 

below a certain threshold before it will have a noticeable effect on growing season length 

(Browning et al., 2017). 

1.2.3 Satellite-Scale Land Surface Phenology 

The use of satellites to track LSP on a global scale required a conceptual shift in the 

way phenology was understood (G. Henebry & Su, 1995). Satellite sensors such as AVHRR, 

MODIS, and VIIRS have been used to track global LSP with a near-daily temporal resolution 

starting in the 1980s. The spatial resolution of these sensors ranges from 1 km for AVHRR 

down to 250 m for some MODIS and VIIRS bands (Reed et al., 2003), however, at this 

resolution the spectral properties of several land cover types are mixed, making measured 

changes in the spectral reflectance a property of entire vegetation communities, rather than a 

single species (G. Henebry & Su, 1995). These satellite sensors cover large areas, and they 

can provide almost daily coverage of the globe, giving more opportunities to collect imagery 

that is cloud free. This allowed studies of global LSP starting in the 1980s with organizations 

such as NOAA producing global or regional multiday composites that were more 

manageable for researchers (Reed et al., 1994). Unfortunately, the use of imagery covering 
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such a large area has proven difficult to validate since on the ground measurements cover 

only a small fraction of the area covered by these sensors. Also, many of the validation 

methods that have been used, such as field measurements of a few species, or various climate 

and hydrosphere models, are not directly comparable since they do not measure the same 

biophysical properties as satellite LSP (X. Zhang et al., 2018).  

The Landsat satellite series began in 1972 and provides a long-term record of LSP 

that can be studied at a local or regional level (Robinson et al., 2017). The Landsat satellites 

have traded the higher temporal resolution of AVHRR, MODIS, and VIIRS for a significant 

increase in spatial resolution. The 16-day period between successive Landsat imagery makes 

it difficult to detect quickly changing phenological stages (Reed et al., 2009). The 

introduction of the Thematic Mapper (TM) sensor on Landsats 4-5 saw an improved spatial 

resolution of 30 m from the Multispectral Scanner’s 68 m by 83 m bands used on Landsats 1-

5. Landsat 7 introduced the Enhanced Thematic Mapper Plus (ETM+), which added a 15 m 

resolution panchromatic band, and Landsat 8 carries the Operational Land Imager (OLI), 

which added three more bands but had no additional improvements in spatial resolution (U.S. 

Geological Survey, 2018). Using the Landsat imagery it is possible to generate VIs, and in 

particular the NDVI, which has been used in hundreds of thousands of journal articles 

starting from its first use in 1973 (Robinson et al., 2017). To improve the temporal resolution 

of the Landsat series data, data fusion with MODIS and VIIRS imagery has been used in 

studies, using models such as the Spatial and Temporal Adaptive Reflectance Fusion Model 
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(STARFM) to provide near daily imagery (Gao et al., 2006; Hilker et al., 2009; Walker et al., 

2014). 

Calibration of global land surface products is still a challenge and has only been 

partly addressed, for example by compositing multiple daily images to smooth out image 

variation. This unfortunately means that many LSP products are unavailable at temporal 

resolutions higher than several days to weeks based on their composite periods (G. M. 

Henebry & de Beurs, 2013). Curve-fitting and function fitting are other methods used to 

remove noise from LSP, unfortunately these methods also have downfalls such as removing 

actual phenological variations, or even introducing new errors to the time series (Jeremy I. 

Fisher & Mustard, 2007). Because of the difficulties in validating data, LSP products often 

vary from ground measurements by more than ten days. This makes LSP difficult for use in 

climate monitoring when changes detected over decades often vary by only by a few days (X. 

Zhang, Wang, et al., 2017). 

Recent deployments of different satellite constellations may help remove some of the 

issues faced by satellites with either poor spatial or poor temporal resolution. The European 

Space Agency (ESA) recently launched the Sentinel 2A and Sentinel 2B satellites each with 

a Multi Spectral Instrument with a spatial resolution between 10 and 60 m. With the two 

sensors combined the repeat imagery from these sensors is approximately five days. This 

higher image frequency could remove the need to fuse satellite imagery like has been done 

with Landsat and MODIS (Vrieling et al., 2018). The PlanetScope constellation of 120 

CubeSat 3U satellites has achieved an almost daily repeat image of the Earth with a spectral 
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resolution of 3.125 m (Planet Team, 2016). While these satellites are not recording bands in 

the middle and thermal-infrared end of the spectrum like Landsat and Sentinel 2, they are 

recording the visible and near-infrared data needed for VIs such as NDVI and GCC. 

Currently no phenology product exists with PlanetScope data, likely because the data record 

began in 2017, however future use of satellite constellations such as this could drastically 

improve the temporal difficulties faced by current long-term satellite records. 

1.2.4 Near-Surface Remote Sensing Phenology 

Near surface remote sensing (NSRS) provides an approach that may bridge traditional 

and satellite scale remote sensing. This is done by providing field level imaging that can 

target specific species or vegetation communities using spectral information that is then 

comparable with other forms of remote sensing (A. Richardson & Braswell, 2009). Since 

NSRS instruments use spectral information in the same form as satellite scale remote 

sensing, and often use similar or identical VIs, the physiological changes detected in 

vegetation are comparable. This is an improvement over satellite produced VIs being 

compared against records of spring budding or senescence. Not only does NSRS often 

combine spectral properties of entire vegetation communities, it also does not depend on 

these single observer records (A. D. Richardson, Klosterman, et al., 2013). 

NSRS can include any remote sensing device that records spectral information where 

the sensor is mounted to a post, structure, tower or held. This includes hyperspectral devices 

such as spectrometers (Mohler & Goodin, 2013), and goniometers (Coburn & Peddle, 2006), 

or it can include multispectral imaging devices such as a Tetracam (Higgins et al., 2011), or a 
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phenocam (T. B. Brown et al., 2016). The hyperspectral devices can record hundreds of 

spectral bands, but often lack the ability to detect spatial variation, while imaging devices 

often only record spectral information for three to six bands (A. D. Richardson, Klosterman, 

et al., 2013).   

Phenocam started as a single web-enabled camera, recording NSRS imagery in the 

Bartlett Experimental Forest in New Hampshire, U.S. (A. D. Richardson et al., 2007). Ever 

since, the term “phenocam” has become more generalized to mean any web-enabled camera 

used to study phenology (T. B. Brown et al., 2016). The Phenocam Network 

(https://phenocam.sr.unh.edu/webcam/) now has more than 500 active cameras in various 

field sites across the globe, however approximately 480 are within the contiguous U.S., while 

there is little coverage in South America, Africa and Asia (T. B. Brown et al., 2016). Many 

different vegetation community types are represented by phenocam imagery, including 

cropland, deciduous forest, coniferous forest, mixed forest, grassland, shrubs, tundra, 

wetlands (A. D. Richardson et al., 2018) and even a tidal salt marsh (O’Connell & Alber, 

2016). Phenocams started monitoring a forest, and their use for forest phenology has 

continued to grow (Hufkens et al., 2012; Keenan et al., 2014; Klosterman et al., 2014; 

Melaas, Sulla-Menashe, et al., 2016; Sonnentag et al., 2012; Toda & Richardson, 2018; 

Yingying et al., 2018). Phenocam research has also been used in various grassland studies 

(Browning et al., 2017; Cremonese et al., 2017; Inoue et al., 2015; Julitta et al., 2014; Y. Liu 

et al., 2017; Migliavacca et al., 2011; Q. Zhou et al., 2019). However, work is still needed to 

improve the way phenocam imagery is compared and scaled with satellite sensors (Tang et 
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al., 2016), as well as which VIs are used to detect phenophases in different ecosystem types 

(Helman, 2018). Calibration and protocol development for the ways in which phenocam 

imagery can be used and accessed is still a challenge that needs to be addressed (A. D. 

Richardson, Klosterman, et al., 2013).  

Calibration of phenocam imagery is a work in progress, and a few studies have made 

improvements in the way phenocam imagery are used (Filippa et al., 2016, 2018; Petach et 

al., 2014). The NetCam SC IR (StarDot Technologies, Buena Park, CA) camera that is 

standard in many phenocam studies was chosen because of its ability to record both a visible 

blue, green, and red color image, and an infrared (IR) image. However, several specifications 

about this camera were unknown, and this made it difficult to integrate the infrared feature 

into the camera. Since the IR image is not taken at the same time as the color image, and the 

IR image does not filter out visible light, but instead includes both, the raw digital number 

(DN) values between the color and IR image are not directly comparable. Petach et al. (2014) 

were able to fix this issue by using a lab controlled environment to determine ratios for the 

three color bands to subtract from the IR image, so that the DN values represent only the IR 

radiation. They were also able to adjust exposure values using a square root function to make 

sure the color and IR imagery taken at slightly offset times are comparable and can be used 

to derive VIs that rely on color and IR information such as NDVI (Filippa et al., 2018). 

Finally, for the four spectral bands they were able to determine what portion of the 

electromagnetic spectrum (EMS) the camera sensor is sensitive to (Petach et al., 2014). This 

provides valuable information when comparing phenocam imagery with other sensors that 
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may have differences in the wavelengths of the EMS that they are sensitive to, which could 

result in differences in their measured phenology signal. With this information, comparing a 

phenocam and satellite NDVI signal has been proven possible, with a linear scaling equation 

(Filippa et al., 2018). While Petach et al. (2014), made some crucial findings in improving 

phenocam calibration, they recognized that further calibration studies are needed. Changing 

illumination conditions can have a large effect on a phenology signal, and this has only been 

managed by smoothing the signal, for example by using a three-day composite (A. D. 

Richardson, Klosterman, et al., 2013). Unfortunately, this lowers the temporal resolution of 

the imagery, and relies on composites, rather than being able to extract an index value from 

any given image. However, calibration panels or other standardised object in a phonecam's’ 

field of view may be able to remove this noise, and is an area of calibration that should be 

addressed (Petach et al., 2014; A. D. Richardson, Klosterman, et al., 2013). 

The development of a software package that can be utilized through R (R Foundation 

for Statistical Computing, Vienna, Austria) has provided a foundation for protocol 

development using phenocam imagery. The package is called Phenopix, and with it users can 

analyze phenocam imagery more readily without needing a strong background in computer 

science, or digital data analytics (Filippa et al., 2016). Within Phenopix users can define an 

area of interest within a phenocam’s field of view, then choose a VI to use. From here, the 

user can filter the data using one of five methods, fit a curve to the VI using one of five 

methods, and extract various phenophases from the imagery using the four available 

methods. Lastly, the user can estimate the statistical uncertainty in the imagery to measure 
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how much variation exists for the phenophases (Filippa et al., 2016). The R package can also 

implement the IR correction developed by Petach et al. (2014), which is important for the use 

of NDVI derived from phenocam imagery. Continued development of frameworks such as 

this will allow for widespread use of phenocam imagery in research. The establishment of 

open-source development environments, such as those using R or Python, allow collaborative 

work to add future improvements to phenocam calibration and protocol, and make these 

improvements more accessible to a broader community of researchers. 

1.2.5 Vegetation Indices 

VIs are dimensionless measures derived from spectral data acquired from a remote 

sensing instrument, they often measure the amount of green vegetation present (Jones & 

Vaughan, 2010). Vegetation will interact with electromagnetic radiation by either absorbing, 

transmitting or reflecting the radiation. The way in which plants interact with 

electromagnetic radiation is dependent on the photosynthetic and other pigmented tissues in 

the plants leaves (Helman, 2018). VIs take advantage of these relationships and allow us to 

remotely monitor plant growth and development throughout the growing season (Xue & Su, 

2017).  

There are many different VIs that have been developed using various portions of the 

electromagnetic spectrum (Bannari et al., 1995). For example, Xue and Su (2017) have 

documented more than 125 different VIs that have been developed to take advantage of the 

ways in which plants interact with electromagnetic radiation, and to reduce noise created by 

inaccuracies in measurement. Inaccuracies in VIs are often caused by electromagnetic 
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radiation interacting with atmospheric aerosols, clouds, soil, and water (Jones & Vaughan, 

2010). While there have been many VIs produced, this has also led to some criticism: 

because many VIs are based upon similar spectral information, they are often significantly 

correlated and may not provide more information than the VI they are attempting to improve 

on (Glenn et al., 2008). Several VIs takes advantage of plants’ interaction with the red (~620 

nm) and the near infrared (NIR) (~800 nm) electromagnetic radiation. This is because red 

light is absorbed by healthy vegetation through photosynthetic tissues, while NIR light can 

damage plant cells and is typically highly reflected by or transmitted through plant tissues 

(Helman, 2018). The interaction plants have with red and NIR light has led to the creation of 

VIs such as the Difference Vegetation Index (DVI) (Eq. 1), the Ratio Vegetation Index (RVI) 

(Eq. 2) and the NDVI (Eq. 3) (Bannari et al., 1995; Jones & Vaughan, 2010; Xue & Su, 

2017). NDVI is the most widely used index. NDVI is sensitive to vegetation, and is 

normalized so that values typically fall between 0 and 1 (Xue & Su, 2017). However, values 

as low as -1 can occur when imaging water, clouds or snow (Jones & Vaughan, 2010). 

Having normalized values makes it easy to compare values across multiple locations (Xue & 

Su, 2017). While NDVI has been widely adopted many modified versions exist that try and 

manage problems found with atmospheric and soil background effects, as well as saturation 

in areas of dense vegetation (Helman, 2018). A modified NDVI has even been produced to 

be used in environments that are often snow covered prior to the onset of spring green-up, 

since snow cover can have a large effect on NDVI values (Cong Wang et al., 2017).   
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 𝐷𝐷𝐷𝐷𝐷𝐷 =  𝑁𝑁𝐷𝐷𝑁𝑁 –  𝑁𝑁𝑅𝑅𝑅𝑅 (1) 

 𝑁𝑁𝐷𝐷𝐷𝐷 =  
𝑁𝑁𝐷𝐷𝑁𝑁
𝑁𝑁𝑅𝑅𝑅𝑅

             (2) 

 

 
N𝐷𝐷𝐷𝐷𝐷𝐷 =

N𝐷𝐷𝑁𝑁 − R𝑅𝑅𝑅𝑅
N𝐷𝐷𝑁𝑁 + 𝑁𝑁𝑅𝑅𝑅𝑅

 (3) 

In addition to NDVI, another VI that has become prominent in phenology is the use 

of chromatic coordinates (Gillespie et al., 1987), more specifically the Green Chromatic 

Coordinate Index (GCC) which can be found in several publications (L. A. Brown et al., 

2017; Browning et al., 2017; Filippa et al., 2018; Julitta et al., 2014; Keenan et al., 2014; A. 

D. Richardson et al., 2007; Sonnentag et al., 2012; Toda & Richardson, 2018). GCC does not 

depend on having NIR and instead only needs imagery containing red, green, and blue 

(RGB) spectral information. Using RGB, total brightness can be calculated be simply 

summing together the digital number (DN) of each color. We can then calculate normalized 

brightness for any color by dividing its DN by the total brightness (A. D. Richardson et al., 

2007). Equation 4 shows this using green as the numerator to produce the GCC index. Using 

GCC it is possible to compare the relative percent greenness between sequential 

measurements taken at the same location. GCC, like NDVI, can be used for the detection of 

phenophases over the growing season (Fig. 2).         

 GCC =
GreenDN

BlueDN + GreenDN + RedDN
 (4) 
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NDVI and GCC are both being used to derive estimates of vegetation greenness over 

the growing season using phenocam imagery (Filippa et al., 2018; Petach et al., 2014). 

However, the two indices do not always correlate with to various phenophases, or across 

ecosystem types (Filippa et al., 2018). Research is still needed to identify how life stages in 

different vegetation species affect VI measurements, and how these affect scaling to various 

remote sensing platforms (Morisette et al., 2009). In grassland ecosystems one of the largest 

differences between GCC and NDVI occurs in their prediction of the end-of-season DOY, in 

which the GCC date can be up to 50 days earlier then NDVI (Filippa et al., 2018). In 

addition, NDVI has been used to model changes in the leaf area index (LAI) (Steltzer & 

Welker, 2006), while GCC has been used in correlation with gross primary productivity 

(GPP) (Toomey et al., 2015).      

  
Fig. 1: Various phenophases that can be captured using a vegetation index, originally 
published in Zhang (2012). 
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Determining phenophase transition dates using VIs relies on developing methods that 

can identify specific transition periods in vegetation growth and senescence (Fig. 2) (X. 

Zhang, 2012). While the determination of different phenophase events seems straight 

forward, many different approaches and terms have been used. For example, the 

identification of spring green-up, or the start-of-season, or the green-wave (Mark D. 

Schwartz, 1994) that occurs every growing season, may all represent vegetation growth in 

the springtime but could be referring to different biological processes (White et al., 2009). 

Three main methods exist that have been used to determine the day of year (DOY) in which a 

phenophase occurred, and within these methods, there are a few variations. Global thresholds 

are perhaps the simplest method to measure phenophase transitions. A phenophase is defined 

by the DOY on which the VI reaches a set threshold value. For example, the DOY recorded 

as onset green-up could be set based on when NDVI reaches a value of 0.2 or 0.3 (White et 

al., 2009). These thresholds may need to be adjusted for any given location, and do not allow 

for easy spatial comparison. The global threshold approach can be modified into a second 

category called local thresholds. Within local thresholds the VI is adjusted so that the 

minimum and maximum values over the growing season or a historic record are scaled 

between zero and one. Then a threshold value is set, such as the midpoint, to determine a 

given phenophase DOY (White et al., 2009; White & Nemani, 2006). The percent-above-

threshold model (PAT) modifies the local threshold model further by requiring a majority of 

imagery pixels to reach the threshold value. This reduces the ability of data noise to reach a 

threshold early, but requires VI data to have multiple pixels within the study region (White & 



23 
 

Nemani, 2006). Mathematical models make up the third method used to determine a given 

phenophase DOY value. Instead of relying on thresholds, a function is fit to the VI values, 

and changes in slope over the growing season are used to identify shifts in phenophase (X. 

Zhang, 2012). 

Using both the mathematical models and the local thresholds to determine 

phenophase transitions have several advantages. Since VIs are a unit-less measures of 

vegetation growth, no constant value is necessarily going to describe the same growth stage 

in vegetation for any given location. This means that using a constant global threshold is not 

highly effective, and does a poor job of describing similar vegetation growth stages at 

different locations (White & Nemani, 2006). Instead using historic minimum and maximum 

values to adjust local thresholds allows values to be comparable between locations, and they 

are more likely going to describe similar changes in vegetation growth (White et al., 2009). 

In addition, unlike mathematical models, local thresholds do not smooth out variations in 

data that could be caused by true disturbance events, and because they use historic records to 

establish minimum and maximum values they can be used for predictive modeling (White & 

Nemani, 2006). In contrast, mathematical models are less sensitive to variation in VI values 

caused by noise from non-vegetation components such as snow or cloud cover, and are less 

likely to inaccurately detect true phenophase transitions (X. Zhang, 2012). 

1.3 Project Objectives 

This study will answer the following groups of questions: 
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1) How can calibrated imagery within a phenocam’s field of view be used to normalize 

phenocam imagery under illumination conditions that change daily and seasonally? 

Assuming satellite calibrated measurements are correct, can we develop an algorithm to 

correct phenocam GCC, EVI2 and NDVI? 

2) What are the statistical relationships between phenocam GCC, VCI, NDVI, EVI2 and the 

co-located weather station measurements, including solar radiation, soil moisture, 

precipitation, soil temperature and air temperature? How can we identify the primary forcing 

between start of season, peak greenness, senescence, and end of season? What are the 

differences between the four VIs in their ability to detect changing environmental conditions? 

3) How can we couple together VI information from multiple phenocam sites to allow for 

both temporal and radiometric calibration of phenocam imagery. Can we use this information 

to model VIs across the study region, and will aligning the imagery allow us to predict VI 

values at any given location? How do the predicted models compare with datasets that have 

been left out of the modeling process? 

 This dissertation is organised so that each major chapter seeks to address each of the 

three objectives. Each chapter is organized and formatted in the style of a scientific journal 

article to facilitate future publication.  
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II. Scaling Phenocam GCC, NDVI, and EVI2 with Harmonized Landsat-

Sentinel using Gaussian Processes 

Burke, Morgen W.V., and Bradley C Rundquist. 2021. “Scaling Phenocam GCC, NDVI, and 
EVI2 with Harmonized Landsat-Sentinel Using Gaussian Processes.” Agricultural and 
Forest Meteorology 300 (January). Elsevier B.V.: 108316. 
doi:10.1016/j.agrformet.2020.108316. 

2.1. Introduction 

Phenology is the study of biological events that have reoccurring cycles. These cycles 

can be influenced by both abiotic and biotic factors, and the interactions between these 

factors (A. D. Richardson, Keenan, et al., 2013). The study of vegetation phenology is often 

done at two spatial scales (Zeng et al., 2020). Traditional monitoring of vegetation phenology 

consisted of ground-based observations, often with a small sample size across a small 

geographic extent (A. Richardson & Braswell, 2009). For example, since 801 AD there is a 

written record marking the beginning of cherry flowering in Japan (Aono & Kazui, 2008; 

Aono & Saito, 2010). Phenology networks have improved upon this by increasing the 

observational extent, and standardising protocols (Mark D. Schwartz et al., 2013).  

Satellite-scale land surface phenology (LSP) has been made possible with the 

increased temporal resolution of satellite sensors, often repeating imagery on a bi-weekly to 

weekly schedule (Helman, 2018). LSP required a conceptual shift away from traditional 

single species monitoring to satellites covering a broad range of species across an ecosystem 

(G. Henebry & Su, 1995). However, satellites often have trade offs between spatial and 

temporal resolution that can make it difficult to detect changes in phenology, particularly 
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when changes over a decadal period often vary by only a few days (X. Zhang, Liu, et al., 

2017). Harmonization of different satellite sensors, such as the Harmonized Landsat-8 and 

Sentinel-2 (HLS) surface dataset (Claverie et al., 2018), can help address some of these 

challenges (Q. Zhou et al., 2019), but spatial and temporal gaps remain.    

Near-surface remote sensing (NSRS) can help fill the gap between traditional and 

satellite-scale phenology (Browning et al., 2017). NSRS instruments can have a high 

temporal resolution with repeat measurements made multiple times a day, and capture 

information over a given area instead of focusing on individual species (A. Richardson & 

Braswell, 2009). The Phenocam Network (https://phenocam.sr.unh.edu) is a system of web-

enabled digital cameras used as NSRS devices to capture time-lapse photography of various 

ecosystems across the U.S., with a few cameras in other countries across the globe. The 

cameras are referred to as phenocams, and are used to capture changes in the radiometric 

properties of vegetation within their field of view (FOV) (T. B. Brown et al., 2016). There 

are several other phenology networks that are also gathering data across the globe including 

the U.S. National Phenology Network (Denny et al., 2014), the European Phenology 

Network (Van Vliet et al., 2003), and the Phenological Eyes Network (Nagai et al., 2018). 

Phenocams allow the phenological changes of vegetation, called phenophases, such 

as spring green-up and fall senescence, to be tracked throughout the growing season (A. 

Richardson & Braswell, 2009). The color information provided by the camera can be used to 

calculate vegetation indices (VIs) (Filippa et al., 2018) and these have been used within 

mathematical models to examine changes in the timing of vegetation phenology (Elmore et 
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al., 2012; Ren et al., 2018). The most commonly used VI from phenocam data is the Green 

Chromatic Coordinate (GCC), a proportional measure of relative channel brightness that has 

been shown to reduce noise in the phenology signal (L. A. Brown et al., 2017; Browning et 

al., 2017; Cremonese et al., 2017; Cui et al., 2019; Julitta et al., 2014; A. Richardson & 

Braswell, 2009; Sonnentag et al., 2012; Toda & Richardson, 2018; Vrieling et al., 2018). A 

modification of the GCC has also been proposed with the Vegetation Contrast Index (VCI), 

which has an increased dynamic range (X. Zhang et al., 2018). The VIs calculated using 

phenocam data can also be used for validation with data gathered from other sources, such as 

satellite imagery (Q. Zhou et al., 2019) or individual observation (Kosmala et al., 2016). 

While NSRS using phenocams has grown over the past decade, there are still some 

challenges when using data from the cameras. Phenocams provide an image based on digital 

numbers (DNs) that do not represent true measures of reflectance or radiance. This means 

that imagery needs to be calibrated or filtered to get a useful signal (Filippa et al., 2018; Piao 

et al., 2019). To use VIs that exploit the near-infrared (NIR) portion of the electromagnetic 

spectrum, many phenocams have a mechanical cut-filter that allows the camera to capture a 

color and a color-infrared image. Then, with post-processing, the NIR information can be 

extracted for use in VIs such as the Normalized Difference Vegetation Index (NDVI) 

(Filippa et al., 2018; Petach et al., 2014). NDVI relies on the NIR band that is highly 

reflected by the mesophyll leaf structure, and the red band that is absorbed by chlorophyll 

(Jones & Vaughan, 2010; Pettorelli et al., 2005). NDVI has a long history in earth 
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observation (Rouse et al., 1973), and has been increasingly used with satellite imagery for 

ecological studies (Pettorelli et al., 2005). 

Changes in solar illumination between consecutive phenocam images can have a 

large effect on the recorded DN values (Goodin et al., 2004). To manage the noise introduced 

by changing solar illumination, images are often filtered, either by time of day or using a 

classification system (O’Connell & Alber, 2016), or they are aggregated into daily or 

multiday composites to smooth out the signal (Filippa et al., 2018; Petach et al., 2014). While 

this has generally been found to reduce noise throughout the growing season, the DN values 

used for calculation still do not match true measures of surface reflectance (SR) and cannot 

be directly compared against other remote sensing products such as satellite imagery, or 

between phenocam sites (Sonnentag et al., 2012). This has been somewhat addressed by 

scaling phenocam metrics to that of satellite imagery or in-situ field spectrometers (Filippa et 

al., 2018; Petach et al., 2014). However, having an in-situ spectrometer to scale phenocam 

imagery is redundant since the spectrometer is likely to record the radiometric signal more 

accurately. Also, phenocams are considerably lower cost and do not require regular sensor 

cleaning and calibration making them more desirable for widespread use over spectrometers 

(A. D. Richardson, Klosterman, et al., 2013). Scaling phenocam data with satellite imagery 

relies on having imagery at high enough temporal resolution to provide a reliable measure 

between various phenophases. However, even with high temporal resolution imagery, the 

shape of the phenology signal may differ between satellite and phenocam sensors caused by 

the “scale effect” leading to different phenophase dates being derived from each sensor 
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(Licong Liu et al., 2019). Reference panels have also been suggested as a means to remove 

noise between consecutive images (Browning et al., 2017; Ide & Oguma, 2010; Petach et al., 

2014; A. Richardson & Braswell, 2009), however, panels can fade and change in their 

spectral properties over time making them unreliable for long-term measurements (A. D. 

Richardson, Klosterman, et al., 2013).  

Gaussian process (GP) regression is a machine learning method that is characterized 

as a nonparametric Bayesian approach (Aghighi et al., 2018). A GP regression fits a defined 

covariance function to a dataset by recreating the underlying signal and removing the noise 

(Rasmussen & Williams, 2006). The GP does require optimization of observational noise and 

covariance function hyperparameters, however this can be achieved using stochastic 

gradient-based optimization (Kingma & Lei Ba, 2015). In LSP, GPs have typically been used 

for smoothing and gap filling time series VIs such as the leaf area index (LAI) (Belda et al., 

2020; Verrelst et al., 2012) and NDVI (Aghighi et al., 2018; Jönsson & Eklundh, 2002; 

Rodrigues et al., 2012). 

We propose applying a machine learning approach using a GP to scale phenocam 

imagery to HLS, and to derive scaled VIs from the phenocam DN values. We will use the GP 

primarily to smooth the HLS VIs and scale the phenocam VIs to the GP HLS models. This 

will allow us to calculate VIs that utilize the red, green, blue (RGB) and NIR portions of the 

electromagnetic spectrum and align them with VIs calculated from standardised reflectance 

measures. This could greatly improve the ability to make comparisons between phenocam 

measurements at different sites or make comparisons with VIs measured using satellite 
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sensors. Also, VIs calculated using SR are better able to maintain relationships with 

measures of canopy cover and LAI (Jones & Vaughan, 2010). 

2.2. Methods and Data 

2.2.1 Study Area 

We selected six phenocam field locations to carry out our proposed methods (Fig. 3). 

The three northern stations located within the temperate prairies are the Oakville Prairie 

station (Oakville), a part of the University of North Dakota located in Grand Forks County, 

North Dakota (47.8993°N, 97.3161°W); the USGSEROS station at the Earth Resources 

Observation and Science (EROS) Data Center near Sioux Falls, South Dakota (43.7343°N, 

96.6234°W); and the Nine Mile Prairie station (Nine-Mile), a part of the University of 

Nebraska – Lincoln (40.8680°N, 96.8221°W), located in Lancaster County, Nebraska. The 

three southern stations, located within the south-central semiarid prairies, are a part of the 

National Ecological Observatory Network (NEON). These sites include the 

NEON.D06.KONZ.DP1.00033 station (Konza) (39.1008°N, 96.5631°W), located at the 

Konza Prairie Biological Station near Manhattan, Kansas, the NEON.D10.ARIK.DP1.20002 

station (ARIK) (39.7582°N, 102.4471°W) located near the Arikaree River in Colorado, and 

the NEON.D11.OAES.DP1.00033 station (OAES) (35.4106°N, 99.0588°W) located at the 

Klemme Range Research Station in Oklahoma. These stations represent a latitudinal gradient 

from North Dakota (47.8993°N) to Oklahoma (35.4106°N) through the North American 

Great Plains Region. Grassland or prairie phenocam sites will be the focus of this research. 

Grasslands can readily be monitored from both near-surface and satellite-scale remote 
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sensing having a strong seasonal signal (Petach et al., 2014) and a relatively homogenous 

canopy when compared with forests or other more complex land cover types (Ali et al., 2016; 

Y. Liu et al., 2017). 

Figure 3: Study area showing the six phenocam locations situated within the Great Plains of 
the Contiguous U.S. 

2.2.2 Determining Phenocam Field of View 

Mapping each phenocam’s FOV was necessary to determine the spatial extent that the 

phenocam is capable of imaging. For the Oakville station, we had access to the field site, and 

were able to carry out an in-situ method to determine the phenocam’s FOV. To do this 
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several datasets are needed. First, a series of points need to be collected within the 

phenocam’s FOV. This was done using a Trimble Geoexplorer (Trimble Inc., Sunnyvale, 

CA) GPS receiver in which 20 georeferenced points were recorded within the FOV, with the 

help of a guide to ensure georeferenced points were captured within the FOV while standing 

as close as possible to the FOV boundaries (Fig. 4a).  

In addition, ancillary measurements were needed from the phenocam including the 

azimuth (352°), height above ground (1.57 m), the angle towards the ground, where parallel 

with ground is 0° with a downward angle being negative (-18°), and an accurate 

georeferenced point location for the Phenocam (Fig. 4b). The last data source needed was a 

digital elevation model (DEM) for the phenocam region. For the Oakville station a 1/9th arc 

second DEM is available from the U.S. Geological Survey (USGS) National Map 

(https://viewer.nationalmap.gov/basic/). Using the gathered datasets, we used Arcpy within  

ArcGIS Desktop 10.6 (Environmental Systems Research Institute, Redlands, CA) to run the 

visibility tool within the 3D Analyst toolset (Krienert, 2015). This produced a polygon 

showing the FOV for the phenocam, allowing us to determine the region of vegetation that is 

visible within the phenocam imagery (Fig. 4b).  
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Figure 4: (a) Using a handheld GPS to map the FOV extent (b) The FOV for the Oakville 
phenocam. Twenty-point locations were recorded within the FOV and used to determine the 
spatial extent visible by the phenocam. 

For the five other field locations we choose to use an ex-situ method to determine the 

FOV. Using the satellite-based basemap imagery available within ArcGIS Desktop 10.6, and 

imagery from U.S. Department of Agriculture’s National Agricultural Imagery Program 

(NAIP), we visually located each of the phenocam stations and estimated the spatial extent, 

cross-referencing with the phenocam imagery to identify landmarks, such as trees and roads, 

within the imagery (Fig. 5). These spatial extents were used to extract pixel information for 

the HLS imagery, which has a spatial resolution of 30m x 30m, and we do not expect errors 

in over or underestimating the FOV to have significant effects on our results since grasslands 

are relatively homogenous. 
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Figure 5: Field of View (FOV) for five of the phenocam stations. FOV boxes were drawn in 
each of the phenocam images (a, c, e, g, i, and k) along with maps showing the estimated 
spatial extent (b, d, f, h, j, and l) on NAIP imagery. (a) Oakville phenocam and (b) spatial 
extent; (c) USGSEROS phenocam and (d) spatial extent; (e) Nine-Mile phenocam and (f) 
spatial extent; (g) Konza phenocam and (h) spatial extent; (i) ARIK phenocam and (j) spatial 
extent; and (k) OAES phenocam and (l) spatial extent.    

2.2.3 Processing HLS Imagery and Extraction of Reflectance 

We acquired HLS from the National Aeronautics and Space Administration’s 

(NASA) data portal (https://hls.gsfc.nasa.gov/data/v1.4/). By combining imagery taken from 

both the Landsat-8 Operational Land Imager (OLI), and the Sentinel-2 Multispectral 

Instrument (MSI) sensors, we can acquire many measurements taken over the growing 
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season. We used the Sentinel-2 S30, and the Landsat-8 L30 products, which provided 30m x 

30m spatial resolution datasets. We identified imagery tiles for each of the field sites, and 

retrieved all imagery recorded between January 1, 2013, and December 31, 2019, giving us 

seven years of data at each site.  

Typically, for low-resolution imagery such as the Moderate-Resolution Imaging 

Spectroradiometer (MODIS), a single pixel or the average value of a 3x3 or 5x5 pixel 

window centered over the phenocam site is used to represent satellite reflectance (Hufkens et 

al., 2012). However, with the HLS’s higher resolution, we chose to incorporate all pixels in 

the FOV into our reflectance calculation. For each field site we iterated through each of the 

HLS images and extracted the pixels for the RGB and NIR bands that fell within the sites’ 

FOV (Fig. 5). Image processing was done using the Python 3.7 programming language 

(Python Software Foundation, Beaverton, Oregon). To filter out cloud and snow cover 

images we used the median value from the blue band for each image and identified any 

images that had a median reflectance greater than 8.5 percent. We visually inspected these 

images and found that this threshold was able to identify images with clouds or snow 

covering our FOV. Therefore, we removed any imagery from our dataset that had a blue 

median value above 8.5 percent. Next, we used Inverse Distance Weighting (IDW) to derive 

a weighted average reflectance value from each image that would be associated with the 

phenocam FOV. IDW was calculated with Eq. 1, by measuring the distance between the 

phenocam and the center of each pixel (dn), as well as the pixel’s value (xn). This provided an 
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interpolated measure in which pixels closer to the phenocam have a greater influence on the 

resulting value (Shepard, 1968). 

 
𝐷𝐷𝐷𝐷𝐼𝐼 =
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⋯

+ �1
𝑅𝑅𝑛𝑛� ��

 
(1) 

 

2.2.4 Calculating VIs from HLS imagery  

We selected three different VIs to calculate using the HLS IDW reflectance values 

and the phenocam DN values. GCC (Eq. 2), was originally developed for use with 

phenocams, and provides a measure of ‘greenness’ that is relatively stable under changing 

illumination conditions (A. Richardson & Braswell, 2009). NDVI (Eq. 3) has a long history 

of use in Earth Observation (Rouse et al., 1973), and provides a normalized value with a 

theoretical range from zero to one, except for clouds, snow and water that often produce 

negative values (Jones & Vaughan, 2010; H. Q. Liu & Huete, 1995). The Enhanced 

Vegetation Index (EVI) was produced as a modification of NDVI that could better minimize 

effects caused by soil background and atmospheric noise (H. Q. Liu & Huete, 1995). A 

variation of EVI was later produced (EVI2) (Eq. 4), that could be calculated using only red 

and NIR reflectance, allowing it to be used on sensors that lack blue reflectance, such as the 

Advanced Very High Resolution Radiometer (AVHRR) (Jiang et al., 2008). While several 

other VIs exist that could be used for our analysis, we found these three were the most 

prominent in the literature and should offer a good gauge of how well our methods 

performed. 
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𝐺𝐺𝐺𝐺𝐺𝐺 =
𝐺𝐺𝐺𝐺𝑅𝑅𝑅𝑅𝐺𝐺

𝐵𝐵𝐵𝐵𝐵𝐵𝑅𝑅 + 𝐺𝐺𝐺𝐺𝑅𝑅𝑅𝑅𝐺𝐺 + 𝑁𝑁𝑅𝑅𝑅𝑅
 (2) 

𝑁𝑁𝐷𝐷𝐷𝐷𝐷𝐷 =
𝑁𝑁𝐷𝐷𝑁𝑁 − 𝑁𝑁𝑅𝑅𝑅𝑅
𝑁𝑁𝐷𝐷𝑁𝑁 + 𝑁𝑁𝑅𝑅𝑅𝑅

 (3) 

𝐸𝐸𝐷𝐷𝐷𝐷2 = 2.5
𝑁𝑁𝐷𝐷𝑁𝑁 − 𝑁𝑁𝑅𝑅𝑅𝑅

𝑁𝑁𝐷𝐷𝑁𝑁 + 2.4 ∗ 𝑁𝑁𝑅𝑅𝑅𝑅 + 1
 (4) 

 

2.2.5 Curve fitting the HLS Imagery with a GP 

For each of the field locations we used a GP to fit a locally periodic covariance 

function (Eq. 5) to the IDW interpolated HLS VIs calculated in section 2.2.4 against the 

Julian century for each image (Rasmussen & Williams, 2006). This allowed us to calculate 

the value for the VIs at any point in time across the seven years of HLS imagery. We used 

TensorFlow within Python 3.7 to carry out the GP regression. TensorFlow provides an 

interface, and framework to execute machine learning algorithms (Abadi et al., 2015).      

k𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(x, x′) = σ2exp�−
2sin2 �π|x − x′|

p �

ℓ2
��1 +

(x − x′)2

2𝛼𝛼ℓ2
�
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(5) 

 

The covariance function is made up of both a periodic and a rational quadratic 

covariance function, also known as a kernel. The multiplication of these two kernels allows 

the model to align with the yearly periodicity of the data, while still being flexible to changes 

between years (Camps-Valls et al., 2016; Duvenaud, 2014; Rasmussen & Williams, 2006). 

The periodic kernel required a period hyperparameter (p), while the rational quadratic kernel 
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required a mixing hyperparameter (α), and both required an amplitude(σ) and length-scale 

hyperparameter (ℓ). All hyperparameters were given an initial value of 1, except for the 

period hyperparameter, which was set at 0.009, the approximate length of a year in Julian 

centuries. An observational noise hyperparameter was also set at 0.01 to manage the balance 

between bias and variance. After these initial hyperparameter settings, each one was further 

fit to the HLS data using AdaMax optimization (Kingma & Lei Ba, 2015) run over 2,000 

permutations with a learning rate of 0.01. This produced a HLS GP model for each of the 

three VIs at each field site. 

2.2.6 Phenocam Image Exposure Correction 

We used the phenocam imagery for each of the six field sites from the Phenocam 

Network website (phenocam.sr.unh.edu). Imagery is available from the sites across multiple 

years, with Oakville and Nine-Mile covering 2016-2019; USGSEROS covering 2015-2017, 

2019; and the three NEON sites covering 2017-2019. Throughout the year an image was 

recorded every half hour during the day, typically starting around 4:00 am and ending around 

10:30 pm local standard time. Each of our chosen sites has the NetCam SC IR with automatic 

exposure, and we selected only images with an exposure from 1/1,000 s to 1 s. Imagery taken 

in the early morning or late at night often had exposure values above 1 s where the prairie 

vegetation was not visible because of the low light levels. For each image recorded four sets 

of information were produced: an RGB image, a mixed RGB-NIR image, and two metadata 

files containing the imagery parameters such as time, date, and exposure (Fig. 6). 
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Figure 6: The FOV from the phenocam showing an example of (a) an RGB image and (b) the 
mixed RGB-infrared image. The resolution of the imagery is 1296 x 960 pixels (5 
megapixels). 

The first step in processing the phenocam imagery required combining RGB imagery 

with NIR information present in the mixed RGB-NIR images. To accomplish this task the 

methods laid out by Petach et al. (2014) were automated using the Python 3.7. Using these 

methods, the RGB-NIR mixed image (ZDN) was corrected (Z’
DN) using its exposure (EZ) (Eq. 

6), then using the RGB image the visible component (YDN) was calculated (Eq. 7) and was 

corrected (Y’
DN) using the RGB image’s exposure (EY) (Eq. 8), and finally the NIR image 

(X’
DN) was extracted (Eq. 9). The same exposure correction was applied to each band of the 

RGB imagery (Eq. 8). This resulted in four-band phenocam images (RGBIRDN) with RGB 

and NIR information in which exposure was standardized between bands. 

 ZDN′ =
ZDN
�Ez

 (6) 

 YDN = 0.30 ⋅ RedDN +  0.59 ⋅ GreenDN +  0.11 ⋅ BlueDN (7) 
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 YDN′ =
YDN
�EY

 (8) 

 XDN′ = ZDN′ − YDN′  (9) 

 

2.2.7 Scaling Phenocam Imagery to HLS Reflectance 

For each of the six sites we separately applied a method to scale the phenocam DN 

values to the HLS GP models from section 2.2.5. We used Python 3.7 to iterate over each 

RGBIRDN
 image and extract the pixel values within the FOV (Fig. 6). We then grouped the 

DN values by day and calculated the 90th percentile for each band (DN90), as well as the 

standard deviation of the blue band, and the number of images recorded each day. Using the 

90th percentile across multiple images has been shown to reduce variability, and is often done 

across a three-day window (Hufkens et al., 2012; Sonnentag et al., 2012).   

We found snow presence in the phenocam imagery introduced variability into the 

calculated DN values. Research detecting snow cover within phenocam imagery has been 

conducted (Kosmala et al., 2018), however the research required the use of neural networks 

and data from 133 field sites, and is not easily implemented at an individual station, or small 

subset of stations. Since this was not available for our field sites, we instead relied on a 

simple measure of standard deviation, which proved effective for detecting daily snow 

presence. The highly reflective surface of the snow results in blue band DN values 

approximately three times higher than is typical from vegetation, and this also produces 

greater variation of blue band DN values throughout the day from changing solar 
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illumination. To exclude snow-covered images, we removed days that had a standard 

deviation in the blue band of greater than 4.5 or had less than 20 images recorded throughout 

the day. We found this simple measure did an accurate job of identifying imagery with snow 

present and was able to help reduce noise within the DN values. 

Using the DN90 data we calculated GCC (Eq. 2), NDVI (Eq. 3), and EVI2 (Eq. 4). 

These VIs were then scaled to the HLS GP VIs. We used linear regressions (Eq. 10) to scale 

the phenocam VIs to the HLS GP modeled VIs. This produced a set of the three scaled VIs 

(GCCs, NDVIs, EVI2s) for each phenocam site. The entire methods process used to derive 

these three VIs is summarised in Figure 7. 

𝐷𝐷𝐷𝐷𝑠𝑠𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 =  𝐷𝐷𝐷𝐷𝑝𝑝ℎ𝐿𝐿𝑛𝑛𝐿𝐿𝐿𝐿𝐿𝐿𝑒𝑒 ∗ 𝑚𝑚 + 𝑏𝑏 (

10) 

 

 

Figure 7: Flow chart of the methods used to scale the phenocam VIs using VIs derived from 
HLS imagery. 
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2.3. Results 

2.3.1 HLS Data Analysis 

2.3.1.1 Extracting HLS FOV reflectance 

We used IDW to calculate HLS reflectance at the site level. We also calculated the 

mean and standard deviation for each image’s FOV and compared the relationship between 

the IDW and mean values. Across all bands the IDW and mean values were highly related 

with R2 ranging from 0.96 to 0.99, and root-mean-square error (RMSE) ranging from 0.0033 

to 0.0075 (Fig. 8). Since both values have such a high correlation, and RMSEs of less than 1 

percent, it is likely acceptable to use either approach. However, the standard deviation of 

FOV pixels, particularly in the blue band was quite noisy, often spanning half the data range. 

Because of this, we decided to use the IDW reflectance, which provides a better control on 

spatial variability.   
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Figure 8: Scatter plot comparing the mean and IDW values for each images red, green, blue, 
and NIR bands across all six field sites. 

 
2.3.1.2 HLS GP Models 

For the six field locations a GP model was produced for each of the HLS VIs (Fig. 9, 

10 and Appendix A). The total number of HLS images available from 2013 to 2019 was 

1,536 and ranged from 153 at the USGSEROS site to 371 at the Nine-Mile site. Comparing 

the predicted VIs values from the HLS GP regression models and the actual HLS data 

calculated using IDW, NDVI had the highest average R2 at 0.82 with a RMSE of 0.073 and 

ranged from 0.71 at OAES to 0.90 at ARIK. EVI2 was the poorest performing band with an 

average R2 of 0.73 and a RMSE of 0.044 and ranged from 0.58 at OAES to 0.84 at ARIK. 



44 
 

GCC bands had an average R2 of 0.78, with RMSE of 0.024. EVI2 at the OAES site was the 

poorest performing model with an R2 of 0.58 and a RMSE of 0.037.     

 

Figure 9: HLS GP model for the Oakville station, showing the median predicted value fit to 
the seven years of IDW HLS VI data. The 1st to 99th percentile is also shown to depict the 
regions of uncertainty in the model, these regions tend to widen in areas with little or no HLS 
data.  
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Figure 10: Scatter Plot of Actual IDW HLS VI values against the GP modeled HLS VI 
values for the Oakville station. The dashed line shows an ideal one-to-one linear fit where 
y=x (1:1 line). 

 
2.3.2 Phenocam Calculated VIs 

Across the six field locations we used the phenocam calculated GCC, NDVI and 

EVI2 and scaled it linearly with the HLS VIs (Fig. 11). We also compared the GP modeled 

HLS VI measurements with the phenocam DN 90th percentile data and the scaled phenocam 

data using a linear regression (Fig. 12, 13 and Appendix B). This allowed us to examine the 

correlation between the HLS GP models and the phenocam VIs. The correlation measured 

using R2 was the same for both scaled and unscaled phenocam VIs since we used a linear 

transformation. On average GCC had an R2 of 0.816, NDVI had an R2 of 0.800, and EVI2 

had an R2 of 0.818. Examining each site ARIK had the highest average R2 at 0.904, while the 
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USGSEROS site had the lowest average R2 of 0.740. The RMSE of these graphs (Fig. 12, 13 

and Appendix B) provides a measure to determine how much better the scaled phenocam 

data aligns with the GP modeled HLS data over the unscaled phenocam data. Across all six 

phenocam sites, for each of the three VIs the scaled phenocam VIs had a lower RMSE than 

the unscaled data. GCC had the smallest difference between the unscaled GCC with an 

average RMSE of 0.044 and the scaled GCC with an average RMSE of 0.023. NDVI had the 

largest difference in RMSE values with the unscaled NDVI having an average RMSE of 

0.648 while the scaled NDVI had an average RMSE of 0.085. For EVI2 the average RMSE 

for the unscaled data was 0.516, while the average RMSE for the scaled data was 0.037.      

 

Figure: 11: The three VIs calculated for all six field locations using the scaled phenocam 
reflectance models. Absolute differences between field sites can be compared since VIs were 
scaled to the HLS GP VIs.  
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Figure 12: VIs calculated for the Oakville station, showing linear regressions between both 
the phenocam DN 90th percentile VIs and the scaled phenocam VIs against the scaled GP 
modeled HLS VIs. The dashed line shows an ideal one-to-one linear fit where y=x (1:1 line). 

 

Figure 13: VIs calculated for the Konza station, showing linear regressions between both the 
phenocam DN 90th percentile VIs and the scaled phenocam VIs against the scaled GP 
modeled HLS VIs. The dashed line shows an ideal one-to-one linear fit where y=x (1:1 line). 
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2.4 Discussion 

Using GPs, we have developed a novel method to scale phenocam imagery to HLS 

reflectance values and provided a method to calculate VIs from phenocam imagery, 

including VIs such as NDVI and EVI2 that incorporate NIR reflectance. With the GP we 

were able to fit a covariance function (Eq. 5) to GCC, NDVI, and EVI2 for HLS imagery. 

We conducted this across six grassland field locations, to examine how well this method 

could be applied at different phenocam sites. Overall, we found our resulting VIs (Fig. 12, 13 

and Appendix B) to have a high level of agreement with the GP modeled HLS VIs having an 

R2 ranging from 0.67 to 0.91. Also, the scaled phenocam VIs had a smaller RMSE with the 

GP modeled HLS VIs averaging 0.049 when compared with the unscaled phenocam VIs 

which averaged 0.403. Across the three VIs the average RMSE was highest for NDVI with 

an average scaled RMSE of 0.085 and an average unscaled RMSE of 0.648, while GCC had 

the lowest RMSE with an average scaled RMSE of 0.023 and an average unscaled RMSE of 

0.044. The linear models for the unscaled NDVI and EVI2 always fell below the 1:1 line 

(Fig. 12, 13 and Appendix B), indicating that phenocam NDVI and EVI2 values were always 

lower than the GP modeled HLS dataset. The linear models for the GCC unscaled phenocam 

data fell on both sides of the 1:1 line, displaying the robustness of GCC to match satellite-

derived indices even without scaling, though on average the RMSE was 0.021 greater than 

the scaled GCC. The unscaled GCC at the OAES site was an exception since it fell above the 

1:1 line. This in not a surprise since the RMSE for the unscaled OAES GCC against the GP 

modeled HLS was the largest for GCC with a value of 0.108. Scaling the OAES GCC 
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brought the RMSE down to 0.015 and confirms that scaling the phenocam GCC data is still 

important to ensure the best alignment with satellite imagery, and to standardise datasets 

between phenocam sites.  

Using the HLS imagery, we used IDW to extract reflectance values that represented 

the phenocams’ FOV. Phenology studies that have made similar comparisons between 

phenocam and satellite imagery have typically used the average value of a 3x3 or 5x5 pixel 

window centered over the phenocam site (Filippa et al., 2018; Hufkens et al., 2012). 

Examining the relationship between the two methods we found a strong agreement with and 

average R2 of 0.98 and a maximum RMSE of 0.75 percent across the four bands (Fig. 8). It is 

likely acceptable to use either method because of the high correlation between them. Using 

the mean value is easier to implement since it does not require spatial information about the 

phenocam location and the distance of each pixel to the phenocam. However, this spatial 

information is readily available for each phenocam site and using the IDW may provide 

better stability across a less homogenous landcover. While our study focused on grassland 

field sites that are relatively homogenous, further work should be done to examine if using 

IDW allows HLS data to be used at more heterogenous sites where pixels may include mixed 

landcover adjacent to the phenocams’ FOV.  

The HLS GP regression models provided a way of recovering the underlying VI 

signal across the HLS imagery while removing the noise (Rasmussen & Williams, 2006). 

The covariance function fit to the HLS VIs was made up of two kernels, the periodic kernel 

aligns with the annual growth signal of the vegetation, while the rational quadratic kernel is 
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able to adapt to changes in the signal from year to year (Camps-Valls et al., 2016). The HLS 

GP regression models relies on satellite data to extract the surface reflectance values and 

calculate the VIs used to scale the phenocam VIs. Unfortunately, this means that our 

developed methods do not likely provide a validation method for satellite-derived VIs since 

this would result in circularity. However, the linear scaling (Eq. 10) only relies on the 

magnitude of the HLS data, and the shape of phenocam VIs is not altered by the shape of the 

HLS data. This means phenophase transition dates can still be derived from our model and 

compared with satellite sensors, however the magnitude of the VIs cannot be used to validate 

the magnitude of HLS derived VIs since this would result in circularity. To detect 

phenophase transition dates methods such as the double logistic function (Elmore et al., 

2012; Ren et al., 2018), or the pruned exact linear time method, that has been used with 

phenocam data (Killick et al., 2012; A. D. Richardson et al., 2019) can be used with our 

scaled dataset.  

With the HLS GP models (Fig. 9, and Appendix A.) we produced three VIs and 

compared them against VIs calculated using the phenocam imagery (Fig. 12, 13 and 

Appendix B). Across all three VIs distributions, the HLS GP models had a high level of 

agreement with the observational data, producing an average R2 of 0.811. Other studies such 

as Filippa et al. (2018) used a linear scaling between satellite-derived NDVI and a phenocam 

NDVI. From the grassland phenocam sites examined they found linear scaling to produce R2
 

values ranging from 0.52 to 0.79. Their R2 values were a little lower then our NDVI R2 range 

from 0.735 to 0.905, however they relied on MODIS imagery with a 250m x 250m 
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resolution, which is a much lower spatial resolution then the HLS imagery, and did not use a 

GP on the satellite imagery first to remove noise and gap fill the time series. Petach et al. 

(2014) found an R2 of 0.89 between their NDVI measurements with a radiometer and a 

phenocam. The fact that this R2 is 0.08 higher than our HLS measurement is to be expected 

since a radiometer measurement taken at the field should have a high degree of agreement 

with the phenocam. Having our HLS scaling come close to that of a field-based radiometer is 

a positive sign that our GP modeled HLS was able to align well with the phenocam VIs. 

The six grassland sites we selected had relatively unimodal seasonal characteristics 

across their growing seasons. The Konza and OAES sites (Fig. 11) within the south-central 

semiarid prairies did however have some unique growth patterns during the 2018 growing 

season. From early June until October of 2018 the two sites experienced severe to extreme 

drought conditions that likely influenced the VIs (NDMC et al., 2020). These drought 

conditions likely produced the rapid decrease in the VIs that can be seen in the phenocam VIs 

after their peak values in the spring. The presence of the drought characteristics in the VIs is 

evidence of the phenocams’ VIs abilities to fit the data, without over generalizing these 

growth characteristics. We believe this gives strong support for future work using this 

method to focus on many of the remaining phenology knowledge gaps such as scaling 

phenocam metrics with other sensors, and in working with climate data to further understand 

the driving forces of phenological observations (Piao et al., 2019). 
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2.5 Conclusions 

The aim of our study was to align phenocam VI values with HLS imagery. The model 

we developed likely can be applied at any phenocam site that has HLS imagery available and 

may be further applicable with other satellite SR products for scaling the phenocam bands. 

Our HLS GP models were able to fit well with the phenocam observations. Using our model 

additional VIs that rely on the RBG and NIR portions of the electromagnetic spectrum can 

also be calculated. By scaling the VIs with VIs calculated from measures of SR we are 

further able to use phenocam imagery to make comparisons between phenocam 

measurements at different sites or make comparisons with VIs measured using satellite 

sensors. This allows for not only VI shape to be compared, but the magnitude of the VIs can 

also be used when examining phenophase values or for using phenocams to validate satellite-

derived VIs other than the HLS data we used as a model input (Hufkens et al., 2012; 

Robinson et al., 2017).  
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III. Modelling Vegetation Phenology at Six Field Stations within the U.S. Great 

Plains: Constructing a 38-year Timeseries of GCC, VCI, NDVI, and EVI2 Using 

Phenocam Imagery and DAYMET Meteorological Records 

3.1 Introduction 

Grasslands cover approximately 59 million km2 of the Earth’s surface (Hufkens et al., 

2016) making up between 10 and 30 percent of the global carbon stock (Scurlock & Hall, 

1998); this makes grasslands the second largest carbon sink after forests (Anderson, 1991). In 

North America, the Great Plains cover approximately 2.9 million km2 within an east-to-west 

gradient of tall to short-grass prairie. However, the conversion of grassland to cropland has 

drastically reduced the remaining native prairie ecosystems. In 2018, it was estimated that 

only half of these grassland ecosystems remain, with 87 percent of them located on poor and 

marginal quality soils (World Wildlife Fund, 2018). The variation within the Great Plains 

creates a variety of community types typically dominated by C3 grasses in the north and east 

(more precipitation and cooler temperatures), and C4 grasses in the south and west (lower 

precipitation and higher temperatures) (Petrie et al., 2016). The C3-pathway for 

photosynthesis is common in temperate regions in grasses such as wheatgrass (Agropyron), 

bentgrass (Agrostis), and foxtail (Alopecurus), while the C4-pathway is common in arid 

regions where the weather is typically hotter and drier with grasses such as bluestem 

(Bothriochloa), threeawn (Aristida), and grama (Bouteloua) (Jones & Vaughan, 2010; 

Stubbendieck et al., 2017). Along with a large amount of spatial variability, grasslands are 

also characterized with high amounts of temporal variability (Flanagan & Adkinson, 2011). 
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This means that climate change induced shifts in grassland phenology will likely only be 

detectable using long-term monitoring over several years to decades (G. M. Henebry, 2013).  

Across the northern hemisphere the onset of spring is predicted to occur earlier under 

the warmer conditions predicted from climate change (Mark D. Schwartz et al., 2006). 

However, a controlled test of grassland phenology using plants grown within a warmer 

temperature, elevated CO2, increased nitrogen, and increased precipitation has shown an 

array of responses that were not all anticipated. Additions of CO2 delayed spring greenness 

while increased nitrogen slowed down the growth acceleration. Precipitation had no effect, 

suggesting it was not a limiting factor for the controlled plants, while increased temperature 

was the only factor to have the expected outcome, causing plants to flower earlier by 2-5 

days (E. E. Cleland et al., 2006). Field observations of arid grasslands using both phenocams 

(A. D. Richardson et al., 2018) as well as satellite imagery are also in agreement that warmer 

temperatures bring an earlier start of season to the grasslands. However, in an arid 

environment precipitation has been found to influence the recorded vegetation indices (VIs), 

even causing a second peak of greenness in the growing season after a large precipitation 

event (Browning et al., 2017). Even though precipitation may have a small influence on 

grassland phenology, modeled scenarios under future climate conditions still suggest that 

North America will see an increase in both the length of the growing season and the 

productivity of grasslands. This is because the modeled grasslands are expected to become 

more efficient in retaining moisture under higher CO2 levels, allowing for a more efficient 

use of water and a reduction in the amount of water lost in transpiration (Hufkens et al., 
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2016). This suggests that precipitation needs to fall below a threshold before it has a 

noticeable effect on growing season length (Browning et al., 2017). 

Identifying the limiting factor for growth of grassland phenology is a challenging 

task, with factors such as temperature and precipitation fluctuating throughout the growing 

season to limit plant growth (J. Wang et al., 2003). Many phenology models still rely on 

temperature as the primary limiting factor to growth, and because of this they under-perform 

by not recognizing the importance of photoperiod and water availability (Piao et al., 2019). 

Temperature-driven models may fail to help predict future phenology patterns from climate 

change since plants can have a reduced sensitivity to temperature (Fu et al., 2015). Instead, 

new models should be developed to account for the interactions between the many 

environmental factors that drive plant growth. 

Machine learning has gained traction in Earth sciences and ecology, with many 

machine learning models outperforming traditional statistical models (Dai et al., 2019). 

Machine learning algorithms apply non-linear techniques that can often identify complex 

underlying relationships in the data (H. Zhang et al., 2019). Regardless of these advantages, 

there are few phenology models that take advantage of the benefits provided by machine 

learning (Dai et al., 2019). One recently developed machine learning algorithm, known as 

XGBoost (XGB), is a gradient boosted decision tree model capable of both regression and 

classification tasks (Chen & Guestrin, 2016). Improvements made in XGB make it more 

robust at handling noise, as well as dealing with unbalanced and skewed datasets (H. Zhang 

et al., 2019). This makes it an excellent choice when working with empirical data that often 
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fails to meet the requirements of parametric statistical analysis. However, using machine 

learning for phenology requires long timeseries datasets with few data gaps, although, even 

then, there analysis can be challenging when noise is present in the data (Belda et al., 2020). 

Phenocams are digital web-enables cameras that are capable of imaging ecosystems 

with high temporal resolution (A. D. Richardson, 2019). Phenocams record changes in 

vegetation throughout the growing season by capturing multiple images per day using the 

visible, and sometime the near-infrared portions of the electromagnetic spectrum. Changes in 

vegetation phenology are known as phenophases and include green-up in the spring, and 

senescence in the fall (A. Richardson & Braswell, 2009). The imagery captured by 

phenocams is used to calculate VIs that record changes in vegetation growth, and have been 

used to calculate other growth indices such as leaf area index (Keenan et al., 2014). The VIs 

calculated from phenocam imagery can also be used to record changes in the timing of 

phenophase transitions to detect how vegetation is responding to changes in their local 

environment, such as changes brought on by climate change (Elmore et al., 2012; Killick et 

al., 2012; Ren et al., 2018). Four VIs that are prominent in phenology research include the 

green chromatic coordinate (GCC) (A. Richardson & Braswell, 2009), the vegetation contrast 

index (VCI) (X. Zhang et al., 2018), the normalized difference vegetation index (NDVI) 

(Rouse et al., 1973) and the two-band enhanced vegetation index (EVI2) (Jiang et al., 2008).  

The high temporal availability of phenocam imagery makes it a suitable data source 

for machine learning analysis. Also, the need for phenology models capable of detecting the 

underlying relationships between many environmental factors makes machine learning an 
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important method to consider for the development of new models. The North American 

Great Plains provide an interesting study area to examine the interactions of different 

meteorological variables because of the spatial gradients that exist in temperature and 

precipitation. Because of this we decided to: 1) develop a regression model using XGB that 

can predict GCC, VCI, NDVI and EVI2 values using meteorological data at multiple 

grassland phenocam locations, 2) determine the primary meteorological variables within the 

model, and how these differ between VIs, and 3) predict the four VIs and measure their 

phenophases to establish trends in phenophase transitions using 38 years of historic 

meteorological data. 

3.2 Methods and Data 

3.2.1 Study Area 

The Great Plains of North America occupy 281 million ha with 224 million ha 

located within the contiguous U.S. (U.S. Environmental Protection Agency, 2020). The Great 

Plains Ecoregion is subdivided into Level-2 regions that represent the diversity within the 

Great Plains (Fig. 14). The temperate prairies in the east are wetter and contain more 

croplands than the drier west-central and south-central semiarid prairies, while the west-

central semiarid prairies are on average cooler than south-central semiarid prairies (Omernik 

& Griffith, 2014). 
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Figure 14: The phenocam locations within the study area. Showing the six phenocam 
locations situated within the Great Plains of the contiguous U.S. Figure taken from Burke and 
Rundquist (2021). 

We selected six grassland locations within the Great Plains of the contiguous U.S. 

(Fig. 14) each of which has a phenocam with at least three years of data (Table 1). Three of 

the sites are located within the temperate prairie ecoregion; the Oakville Prairie (Oakville), a 

part of the University of North Dakota, located in Grand Forks County, North Dakota 

(47.8993°N, 97.3161°W); the USGSEROS station at the Earth Resources Observation and 

Science (EROS) Data Center in South Dakota (43.7343°N, 96.6234°W); and the Nine Mile 

Prairie station (Nine-Mile), a part of the University of Nebraska – Lincoln (40.8680°N, 

96.8221°W), located in Lancaster County, Nebraska. The other three phenocam sites are 
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within the south-central semiarid prairie and are a part of the National Ecological 

Observatory Network (NEON). These sites include the NEON.D06.KONZ.DP1.00033 

station (Konza) (39.1008°N, 96.5631°W) located at the Konza Prairie Biological Station in 

Kansas; the NEON.D10.ARIK.DP1.20002 station (ARIK) (39.7582°N, 102.4471°W) located 

near the Arikaree River in Yuma County, Colorado; and the NEON.D11.OAES.DP1.00033 

station (OAES) (35.4106°N, 99.0588°W) located at the Klemme Range Research Station in 

Washita County, Oklahoma. The six sites represent a 1,470 km latitudinal transect through 

the Great Plains region ranging from 35.4°N to 47.9°N. 

Table 1: Years of data available for each of the phenocam site locations. 
Station Name Years with available data 

Oakville 2016 - 2019 
USGSEROS 2015 - 2017, 2019 
Nine Mile Prairie 2016 - 2019 
NEON.D06.KONZ.DP1.00033 2017 - 2019 
NEON.D10.ARIK.DP1.20002 2017 - 2019 
NEON.D11.OAES.DP1.00033 2017 - 2019 

 

3.2.2 Phenocam Data Source and Calculating the VIs 

We choose to derive four VIs from the phenocam imagery at the six field stations. 

GCC (Eq. 1) is a proportional measure of relative ‘greenness’ that was originally developed 

for use with phenocams because of its relative stability under changing illumination 

conditions (A. Richardson & Braswell, 2009). GCC has be used in a diverse array of 

ecosystem types, and can be measured using any digital camera capable of capturing a color 



60 
 

(red, green, and blue) image (A. D. Richardson, 2019). VCI (Eq. 2) was created as a 

nonlinear transformation of GCC that has a higher dynamic range relative to GCC by 

contrasting the green band to the sum of red and blue (X. Zhang et al., 2018).  NDVI (Eq. 3) 

has a long history in Earth Observation (Rouse et al., 1973), and has been derived from 

phenocams that are sensitive to near-infrared wavelengths (Burke & Rundquist, 2021; Filippa 

et al., 2018; Petach et al., 2014; A. D. Richardson, 2019). EVI2 (Eq. 4) was developed as an 

adjustment to NDVI, with an enhanced ability to remove soil background noise, and 

atmospheric effects (Jiang et al., 2008). 

𝐺𝐺𝐺𝐺𝐺𝐺 =
𝐺𝐺𝐺𝐺𝑅𝑅𝑅𝑅𝐺𝐺

𝐵𝐵𝐵𝐵𝐵𝐵𝑅𝑅 + 𝐺𝐺𝐺𝐺𝑅𝑅𝑅𝑅𝐺𝐺 + 𝑁𝑁𝑅𝑅𝑅𝑅
 (1) 

𝐷𝐷𝐺𝐺𝐷𝐷 =
𝐺𝐺𝐺𝐺𝑅𝑅𝑅𝑅𝐺𝐺

𝐵𝐵𝐵𝐵𝐵𝐵𝑅𝑅 + 𝑁𝑁𝑅𝑅𝑅𝑅
 (2) 

𝑁𝑁𝐷𝐷𝐷𝐷𝐷𝐷 =
𝑁𝑁𝐷𝐷𝑁𝑁 − 𝑁𝑁𝑅𝑅𝑅𝑅
𝑁𝑁𝐷𝐷𝑁𝑁 + 𝑁𝑁𝑅𝑅𝑅𝑅

 (3) 

𝐸𝐸𝐷𝐷𝐷𝐷2 = 2.5
𝑁𝑁𝐷𝐷𝑁𝑁 − 𝑁𝑁𝑅𝑅𝑅𝑅

𝑁𝑁𝐷𝐷𝑁𝑁 + 2.4 ∗ 𝑁𝑁𝑅𝑅𝑅𝑅 + 1
 (4) 

To calculate each of the chosen VIs from the phenocam imagery, we first downloaded 

all available imagery from the six phenocam locations (phenocam.sr.unh.edu). We then 

applied the exposure correction to both the color and mixed color-infrared imagery to extract 

the near-infrared and three color bands (Petach et al., 2014). Using the image digital numbers 

(DNs) for the red, green blue (RGB) and near-infrared (NIR) bands the three VIs were 

calculated using Eq. 1, 2, 3 and 4 for each day of the year in which phenocam imagery was 

available (Table 1). Finally, the phenocam VIs were linearly scaled to Gaussian Process 
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Regression modeled VIs calculated with Harmonized Landsat-Sentinel surface reflectance 

imagery (described in detail in Burke and Rundquist, 2021). This standardised the VI values 

between all phenocam sites, allowing them to be used together within a single XGB model. 

3.2.3 Meteorological Data 

We used Daily Surface Weather and Climatological Summaries (DAYMET) data 

made available by the Oak Ridge National Laboratory (ORNL) within the Distributed Active 

Archive Center (DAAC) (Thornton et al., 2018). DAYMET provides 1km x 1km gridded 

data for North America starting in 1980, with several different weather variables available 

(Table 2). We retrieved the data for each of the six phenocam locations (Fig. 14), for the 

phenocam imagery time periods (Table 1). 

We also used the DAYMET data to derive a few accumulative variables for 

precipitation, snow water equivalent (SWE) and temperature. Previous research has shown 

that precipitation often has a lag period before its has a measured effect on a VI’s signal 

(Potter & Brooks, 1998; J. Wang et al., 2003). Based on this research we decided to 

accumulate precipitation over both 15 and 30 days to see if this would have a stronger 

relationship with the VI signals compared with the daily total precipitation. We did the same 

with the SWE, except changed the lag periods to 60 and 90 days to reflect the longer lag 

periods for snowfall. To calculate these values, we summed together the precipitation or 

SWE for the set number of days prior to each day of the year. To estimate the accumulated 

heat for vegetation growth we used growing degree days (GDD) calculated for each day of 

the year (Eq. 4) (Burke et al., 2018). GDD have historically been used for predicting 
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agricultural crop growth and development, with Tbase set at 0°C for winter wheat a C3 plant 

and 10°C for corn a C4 plant (McMaster & Wilhelm, 1997). We choose to calculate GDD for 

three Tbase values set at 0, 5 and 10°C and examine the relationship these three datasets have 

with our grassland VIs. This resulted in a total of 13 variables being included in our model. 

𝐺𝐺𝐷𝐷𝐷𝐷 =
𝑇𝑇𝑚𝑚𝑇𝑇𝑥𝑥 +  𝑇𝑇𝑚𝑚𝑇𝑇𝐺𝐺

2
− 𝑇𝑇𝑏𝑏𝑇𝑇𝑇𝑇𝑅𝑅, 𝑇𝑇𝑖𝑖 

𝑇𝑇𝑚𝑚𝑇𝑇𝑥𝑥 +  𝑇𝑇𝑚𝑚𝑇𝑇𝐺𝐺 
2

> 𝑇𝑇𝑏𝑏𝑇𝑇𝑇𝑇𝑅𝑅 
(4) 

𝐺𝐺𝐷𝐷𝐷𝐷 = 0, 𝑜𝑜𝑜𝑜ℎ𝑅𝑅𝐺𝐺𝑒𝑒𝑇𝑇𝑇𝑇𝑅𝑅  

 
Table 2: DAYMET daily surface weather data variables used to model the phenocam VIs, 
including both DAYMET provided data and the variables derived from the DAYMET data, 
such as SWE and GDD. 
Data Field Description Units Source 

Dayl Duration of the daylight period for the 
day 

seconds DAYMET 

Prcp Daily total precipitation mm DAYMET 

Srad Incident shortwave radiation flux density w/m2 DAYMET 

Swe Snow water equivalent kg/m2 DAYMET 

tmax Daily maximum 2-meter air temperature degrees Celsius DAYMET 

Tmin Daily minimum 2-meter air temperature degrees Celsius DAYMET 

acc prcp 15 Accumulated precipitation over 15 days mm Derived 

acc prcp 30 Accumulated precipitation over 30 days mm Derived 

acc swe 60 Accumulated SWE over 60 days kg/m2 Derived 

acc swe 90 Accumulated SWE over 90 days kg/m2 Derived 

gdd 0 GDD with Tbase = 0 degrees Celsius degrees Celsius  Derived 

gdd 5 GDD with Tbase = 5 degrees Celsius degrees Celsius Derived 

gdd 10 GDD with Tbase = 10 degrees Celsius degrees Celsius Derived 
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3.2.4 Statistical Analysis of Daily VIs 

To produce a regression model for the four VIs we used XGB, a gradient boosted 

decision tree model (Chen & Guestrin, 2016). We trained our XGB models using a randomly 

selected 80 percent (n = 2,815) of the available data, leaving 20 percent (n = 704) for model 

validation. To help prevent overfitting of the model, and to prune any branches with a 

negative gain, we set lambda to 1 and both alpha and gamma to 0. We also set the learning 

rate to 0.1, max depth to 10 and number of estimators to 50,000. We choose parameters that 

would help prevent overfitting of the model, and were recommended to produce a more 

conservative algorithm (Chen & Guestrin, 2016). Subsampling, also know as bootstrap 

aggregating, was used so that a random selection of half (subsample = 0.5) the training 

samples were used to grow each tree with gradient-based selection (Chen & Guestrin, 2016; 

H. Zhang et al., 2019).  

Using the XBG model we fit each of the VIs against all the meteorological data 

variables including the accumulated precipitation, accumulated SWE and GDD. We 

combined the data sets across all six phenocam sites and created a model that could predict 

the four phenocam-based VIs at any one of the grassland sites given the daily meteorological 

data. By examining the total gain, a relative measure of a variable’s contribution to the 

model, we refined each of the VIs models further by removing the variables with the lowest 

total gain in a stepwise fashion until the R2 declined by more than 3 percent from the first 

model containing all variables, then selecting the model directly before the 3 percent decline. 

We used 3 percent as a threshold to minimize loss of model performance, while allowing 
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enough of a reduction to the model to remove the variables that added little prediction power. 

Using the refined models for each of the four VIs we used the meteorological data to predict 

the VI values for each day of the year starting in 1981 and ending in 2019, producing a 

dataset for each VI ranging 38 years for each of the six phenocam locations. 

3.2.5 Determining Phenophase Transitions Dates 

Using the 38 years of data for the four modeled VIs at the six phenocam locations we 

identified phenophase transitions dates using the same methods applied to the Collection 6 

Moderate Resolution Imaging Spectrometer (MODIS) Land Cover Dynamics Product 

(CMCD12Q2) (Gray et al., 2019). The CMCD12Q2 product identifies seven phenophase 

stages throughout a growth cycle (Fig. 15), starting with greenup in the spring and ending 

with dormancy in the fall. This procedure was completed 24 times to account for the four VIs 

at 6 different sites. A natural cubic spline (Drury, 2020) was fit to the full 38-year time series. 

To find the optimal number of knots to fit the spline we used Akaike’s Information Criterion 

(AIC) to balance under-overfitting of the model (Hurvich et al., 1998). To do this we 

randomly set aside one third of the dataset and fit the spline starting at 38 knots (1 knot per 

year of data) and ending at 570 knots (15 knots per year of data). Using the AIC we 

measured the models fit against the randomly removed data and selected the number of knots 

that produced the lowest AIC value. The spline was then re-fit to the entire dataset using the 

determine optimal number of knots.   
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Figure 15: Phenophase transitions dates for the four VIs at the Oakville station determined 
using the same methods applied to the CMCD12Q2 product. The colored circles denote the 
beginning of their corresponding phenophase. The graph shows three years of data (2017-
2019) taken from the modeled 38-year dataset. 

 Valid vegetation cycles were identified from the 24 spline models using 

methods similar to the CMCD12Q2 product (Gray et al., 2019). Local minima and maxima 

were identified for each year with a half year overlap at the beginning and end of the year. 

The maxima were examined for validity as a peak in vegetation growth while the minima 

were examined to be either the start or end of a vegetation cycle. However, the methods used 

for the CMCD12Q2 product was produced for EVI2 specifically and has a set value of 0.1 

required in the amplitude of any greenup or greendown period for it to be considered a valid 
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cycle. The three other VIs have a varying range of values that do not necessarily align with 

EVI2. Instead of using a constant value of 0.1, we modified this step by requiring greenup 

and greendown periods to have an amplitude that is at least 70% that of the current year’s 

amplitude. Once the valid growth periods were identified we then extracted the seven 

phenophase periods using the same methods as the CMCD12Q2 product. The peak is reached 

at the maximum value for the VI. The greenup, mid-greenup, and maturity occur at a 15, 50, 

and 90 percent increase in amplitude, while senescence, mid-greendown, and dormancy 

occur after the peak as amplitude decreases past 90, 50, and then 15 percent. Using these 

values, we also measured the length of greenup, the number of days between greenup and 

maturity, the length of maturity, the number of days between maturity and senescence, and 

the length of greendown, the number of days between senescence and dormancy, and the 

length of season, the number of days between greenup and dormancy. 

3.3 Results 

3.3.1 XGB Regression Models 

Using the GCC, VCI, NDVI, and EVI2 datasets we produced four XGB regression 

models capable of predicting the VIs value based on all variables within the meteorological 

DAYMET data (Fig. 16). For each of the VIs a total of 2,815 data points were used in model 

training, while 704 data points were set aside for model validation (Fig. 16). Examining the 

validation results GCC was the best fitting model with an R2 of 0.946 and a root mean square 

error (RMSE) of 0.01, while EVI2 was the lowest with an R2 of 0.8954, and an RMSE of 

0.02. Examining the total gain for each of the variables in the four models provides a relative 
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measure of importance. Across all four models the photoperiod as day length, and 

temperature as GDD with a base of 0°C were the two most important variables. While the 

minimum temperature and 30-days of accumulated precipitation were the third and fourth 

most important variables (Fig. 17). These four variables had the highest total gain across all 

four VIs, however they did not all occur in the same order. For example, day length had the 

highest total gain for GCC and VCI while GDD with a base of 0°C was the highest for 

NDVI, and EVI2. 

 
Figure 16: The four XGB modeled VIs against the validation datasets, showing the models 
ability to predict the VIs values given all 13 meteorological variables. 
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Figure 17: The total gain for each of the 13 meteorological variables used in the four XBG 
models.  

3.3.2 Reducing the XGB Regression Models 

With each of the four XGB regression models we removed variables one at a time for 

each VI independently, starting with the variable with the lowest total gain. We then refit the 

XGB models and assessed them with the validation dataset. We continued to remove 

variables until the R2 value of the validation dataset decreased by greater than 3 percent from 

the XGB models that contained all 13 meteorological variables, then selected the previous 

model. For the GCC and VCI XGB models this resulted in a final model using only four 

variables: day length, GDD with a base of 0°C, 30-days of accumulated precipitation, and 

GDD with a base of 10°C (Fig. 18). For the NDVI and EVI2 XGB models the final model 

required five variables: GDD with a base of 0°C, day length, daily minimum temperature, 

30-day accumulated precipitation, and GDD with a base of 5°C (Fig. 18). These four XGB 
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models were able to account for between 89.6 and 93.1 percent of the variation in the VIs 

datasets given 6 of the 13 meteorological variables (Fig. 19). 

 

 
Figure 18: The total gain for the remaining variables used in the reduced XGB models for 
each of the four VIs. 
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Figure 19: The reduced XGB modeled VIs against the validation datasets. For GCC and VCI 
four meteorological variables were used, while for NDVI and EVI2 five of the variables were 
used. 

Using the four reduced VIs XGB regression models we conducted a sensitivity 

analysis to determine how a change in any of the variables effects the resulting VI value (Fig. 

20). To do this we calculated the minimum, maximum and mean values for each of our 

variables, and then predicted the VI value at 100 evenly spaced sample points between each 

variable’s minimum and maximum while holding all other variables at their mean value. This 

analysis shows many of the nonlinearities between the meteorological variables and the VIs. 

For example, across all four VIs an increase in the lower values (< ~1,000) of GDD 0°C 

tends to cause an increase in the VI value. However, as GDD 0°C increases (> ~1,000), 
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eventually the VI value either reaches a plateau or the VI starts decreasing as GDD 0°C 

increases. 

 
Figure 20: Sensitivity analysis showing how the variables in the four reduced XGB models 
effect the VIs values as their value is increases from it minimum to maximum value while all 
other variables are held at their mean value. 

3.3.3 Trends in Phenophase Transitions 

Using the XGB models with the 38 years of meteorological data we predicted the four 

VIs values for each day of the year. Then using these predictions splines were fit for the four 

VIs across the six phenocam locations. For example, at the Oakville station a spline model 

was fit to the predicted NDVI values (Fig. 21). Comparing the XGB predicted values with 
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the spline models, we found that the splines were able to align well with an R2 and a RMSE 

ranging from 0.83 and 0.017 for GCC to 0.92 and 0.039 for NDVI (Fig. 22). Noticeably the 

spline did reduce extreme values within the predicted VI values, for example in GCC where 

XGB predicted values below 0.2 were closer to 0.3 in the spline models. We examined the 

quantile range for both the XGB models and spline models and found little difference 

between the 1st, 2nd, and 3rd quantile for the two models, while the minimum and maximum 

values for the spline models were always closer to the median than the XGB models (Table 

3). 

 
Figure 21: The XGB predicted NDVI values for the Oakville phenocam, using the 
meteorological data starting in 1981 to 2019, covering 38 years. The solid line depicts the 
spline fit to the model predictions showing the yearly vegetation cycles. 
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Figure 22: Scatter plot showing the relationship between the XGB modeled VIs and the 
splines fit to the vegetation cycles. This includes all six of the spline models for each 
phenocam location across the four VIs. 
Table 3: The quantile range of the XGB regression models and the spline models for the four 
VIs. The 1st, 2nd, and 3rd quantiles of the two model types have very little difference, while 
the minimum and maximum values of the spline are always closer to the median value then 
the XGB model.    
Percentile XGB Model (GCC, VCI, NDVI, 

EVI2) 
Spline Model (GCC, VCI, NDVI, 
EVI2) 

Maximum 0.554, 0.954, 0.886, 0.432 0.472, 0.890, 0.785, 0.397 
3rd Quantile 0.396, 0.655, 0.561, 0.270 0.394, 0.655, 0.559, 0.269 
Median (2nd Quantile) 0.361, 0.576, 0.420, 0.203 0.361, 0.571, 0.417, 0.201 
1st Quantile 0.339, 0.525, 0.344, 0.168 0.341, 0.530, 0.347, 0.170 
Minimum 0.114, -0.028, 0.170, -0.005 0.265, 0.310, 0.228, 0.125 
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For each of the spline models we predicted seven day of year (DOY) values as 

phenophases occurring within the vegetation growth cycles. We also calculated the length of 

greenup, the length of maturity, the length of greendown, and the total length of season, as 

the number of days between the greenup, maturity, senecence, and dormancy DOY values, 

respectively. This allowed us to examine trends in the seven phenophases to determine if 

over the 38-year data period they are occurring earlier of later in the growth cycle, and to 

determine if the lengths of time between them is increasing or decreasing. We calculated 66 

linear regressions (Appendix C), one for each phenophase and length between them at the 6 

phenocam locations. Of these linear regressions we found 14 to have a significant trend 

within a 90 percent confidence interval (Table 4). The slope of these linear models provides 

us the change per year in each of the phenophases. For example, at the Oakville phenocam 

the dormancy phenophase produced a slope of 0.27, suggesting that dormancy is occurring 

0.27 days later every year, which across our 38 years of data results in dormancy occurring 

10 days later in 2019 compared to 1981. 
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Table 4: The linear regressions for the phenophases that had a significant trend within a 90 
percent confidence interval across the 38-year data period. A 95 percent confidence interval 
is denoted by a *, while a 99 percent confidence interval is denoted with **. 
Site Phenophase Slope Intersect R2 p Standard 

error 

Oakville Dormancy 0.2716 -245.50 0.029 0.0341* 0.127 
 Length of 

Greendown 
0.2431 -374.94 0.022 0.0626 0.130 

USGSEROS Peak -0.3452 886.31 0.020 0.0789 0.195 
 Senescence  -0.3069 823.81 0.049 0.0057** 0.109 
 Length of Maturity -0.1948 419.02 0.019 0.0889 0.114 
 Length of 

Greendown 
0.5063 -923.46 0.077 0.0005** 0.142 

Konza Peak -0.3034 770.91 0.043 0.0095** 0.116 
 Greenup -0.2495 596.77 0.032 0.0250* 0.110 
 Maturity -0.2735 698.67 0.044 0.0085** 0.103 
ARIK Mid-greendown 0.3600 -466.60 0.031 0.0277* 0.162 
 Senescence 0.1963 -210.26 0.024 0.0535 0.101 
 Length of Season 0.6131 -1021.37 0.033 0.0236* 0.268 
 Length of Greenup 0.4260 -787.17 0.028 0.0376* 0.203 
OAES Length of Maturity 0.2866 -544.54 0.021 0.0694 0.157 

 

3.4 Discussion 

Using the XGB regression we developed a model capable of explaining 90 to 93 

percent of the variability in four VIs (Fig. 19) across six grassland phenocam sites over the 

growing season. Our models demonstrate the importance of including photoperiod, 

temperature, and precipitation information when modeling vegetation phenology. Piao et al. 

(2019) reviewed the importance of including these different meteorological driving factors 
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for modeling vegetation phenology and remarked that many current phenology models 

underperform because of their dependence on temperature without considering the 

interactions of other weather variables. A study by Wang, Rich and Price (J. Wang et al., 

2003) examined the Konza prairie, one of our six phenocam sites, and found that temperature 

was highly correlated with NDVI at the beginning and end of the growing season. Of the 

three GDD Tbase values explored, 0°C remained the most import variable within our model, 

having the highest total gain and remaining in all four reduced models. A Tbase of 0°C 

typically represents vegetation that uses the C3-pathway for photosynthesis such as 

grasslands in the temperate prairie region, while the C4-pathway is represented by a Tbase of 

10°C and would be more common in the hotter and drier south-central semiarid prairie 

(Jones & Vaughan, 2010; McMaster & Wilhelm, 1997). Because of this we anticipated that 

either the 0 °C and the 10 °C GDD variables would both be included in the reduced model or 

the 5°C variable would better represent both regions and would have the highest total gain 

within the XGB regression. Instead, we found a mix of the three GDD Tbase values were 

used depending on the VI (Fig. 18). Both reduced GCC and VCI models contained Tbase 

values 0°C and 10°C, while the NDVI and EVI2 contained Tbase values 0°C, and 5°C. 

The stepwise backwards elimination in XGB regression model variables we used to 

refine our final model was a simple approach to limiting regression variables, while allowing 

the model to identify the most important variables to include. XGB models developed with 

50 to hundreds of independent variables can use more advanced feature selection models 

eliminating multiple features at a time with optimization algorithms that speed up processing 
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time (Pan et al., 2009; H. Zhang et al., 2019). With our approach, we were able to reduce our 

model from 13 variables down to four or five, depending on the VI, with a negligible change 

in model performance reflected in the average model R2 decreasing by 0.011 and RMSE 

increasing by 0.002. This reduction in model variables allowed us to examine the importance 

of the variables as well as the calculated lag times for precipitation and SWE, and the 

relationship between different Tbase values for GDD. Wang, Rich and Price (2003) found a 

two-week lag in NDVI’s response to precipitation events, however they also note that the 

response varied based on environmental conditions. For example, during a drier period the 

response to precipitation would often happen quicker. Our reduced models all selected 

precipitation with an accumulation of 30 days to best predict the phenology signals, 

suggesting that precipitation events occurring up to 30 days prior can control vegetation 

growth. This may be particularly true for the three phenocam sites in the south-central 

semiarid prairies since they are more susceptible to drought. 

The four VIs we used across our analysis, GCC, VCI, NDVI, and EVI2, are all 

measures of vegetation phenology across the growing season. Of the three VIs, NDVI has the 

longest history in remote sensing  (Rouse et al., 1973), while GCC has been well recognized 

within the phenocam literature because of its stability with uncalibrated imaging sensors (A. 

Richardson & Braswell, 2009). VCI provides a nonlinear transformation of GCC, providing a 

higher range of values by contrasting green with the sum of red and blue (X. Zhang et al., 

2018).  EVI2 has also increased in use recently (Bolton et al., 2020; Peng et al., 2021), 
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particularly with remotely sensed data from the Visible Infrared Imaging Radiometer Suite 

(VIIRS) system that lacks the blue band (X. Zhang et al., 2018).   

Using the four VIs we were able to construct a 38-year phenology record at each 

phenocam location using the meteorological data and the reduced XGB models. Being able 

to use a combination of near-surface remote sensing and meteorological data to derive these 

VIs provides a valuable dataset for validation of satellite-based phenology products. It should 

be noted that these models reflect the vegetation from the period in which they were trained, 

2015 to 2019. Any change in vegetation composition that may have occurred between 1981 

and 2015 can not be accounted for since this period of the models is based entirely on 

meteorological data, and not on imagery from the phenocam stations. While this is a 

limitation of our models, it also acts as a control on our results since the trends in phenophase 

transition identified by the models are not affected by a change in species composition and 

are instead driven entirely by changes in climate. Changes in species composition can have a 

large effect on a phenology signal and presents a challenge in identifying climate change 

driven modification of phenophase transition periods (Prevéy & Seastedt, 2014; Wilsey et al., 

2018). Because our models are not based on imagery of the vegetation across the 38 years, 

and instead depend on meteorological data, we are able to model the timeseries under the 

assumption that the species composition did not change. 

The spline models used for detecting the phenophase transitions were on average able 

to account for 87 percent of the variation in the models with RMSE ranging from 0.017 for 

GCC to 0.041 for VCI. One feature of the spline models we did note, was their tendency to 
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be less influenced by extreme VI values (Table 3). Using the four splines for each VI at the 

six phenocam locations we measured seven phenophases and four phenophase periods. This 

resulted in 66 linear regression models (Appendix C) to determine if any trends appeared in 

phenophase transitions over the 38-year timeseries. Examining the significant trends within a 

90 percent confidence interval (Table 4) we found 14 phenophases that have shifted across 

the phenocam sites except for the Nine-Mile station which had no significant trends. For the 

two northern phenocams in the temperate prairies the length of greendown has increased by 

9.2 days (0.24 days/year) at the Oakville station, and 19.2 days (0.51 days/year) at the 

USGSEROS station over the 38 years. The 10-day difference between the two stations is 

likely attributed to the fact that the USGSEROS station has seen an earlier onset of peak 

greenness by 13.1 days (-0.35 days/year), and an earlier onset of senescence by 11.7 days (-

0.31 days/year), which has also shortened the length of maturity by 7.4 days (-0.19 

days/year). This suggests that the growing season at the USGSEROS station is trending 

towards a quicker occurrence of peak greenness followed by a shorter period of greenness 

between maturity and senescence, with an extension in the greendown period. In a study 

using imagery from the Advanced Very High Resolution Radiometer (AVHRR) from 1982 

to 2002, Reed (2006) found grasslands to have a later dormancy period by 6.52 days (0.33 

days/year), while greenup also started later by 8.01 days (0.40 days/year). A similar study 

used AVHRR from 1982 to 2006,  Zhu et al. (2012) found grasslands in North America to 

have a later onset of greenness by 7.6 days (0.32 days/year), and a later dormancy by 2.1 

days (0.09 days/year) causing a shortening of the growing season by 5.6 days (-0.23 
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days/year). The offset of dormancy occurring later into the season agrees with our study with 

dormancy at the Oakville station occurring 10 days later (0.27 days/year). This falls within 

the range found by Liu et al. (2016) with dormancy in the Northern Hemisphere occurring 

between 0.19 and 0.45 days later each year. For five of the six phenocam sites greenup did 

not have a significant trend, with no sites finding greenup occurring later. The one site with a 

greenup trend was the Konza station in which greenup occurs 9.5 days (-0.25 days/year) 

earlier in 2019 then in 1981. This value is close to the 2.8 days per decade (-0.28 days/year) 

in which spring phenology is predicted to have advanced for both plants and animals in the 

northern hemisphere (Hoegh-Guldberg, Jacob, et al., 2018).  At the Konza station maturity 

and peak greenness is also occurring earlier in the year by 10.4 days (-0.27 days/year) and 

11.5 days (-0.30 days/year), respectively. For this station, the earlier onset of greenness 

seems to be to be followed by an earlier onset of maturity and peak greenness for the 

vegetation. Of the six stations ARIK was the only station to find a significant trend in the 

overall length of the growing season with it increasing by 23.3 days (0.61 days/year). This 

station also had its length of greenup increase by 16.2 days (0.43 days/year) while its 

senescence and mid-greendown dates are occurring 7.5 days (0.20 days/year) and 13.7 days 

(0.36 days/year) later, respectively. The ARIK increase in length of season agrees with Zhou 

et al. (2001) who used AVHRR from 1981 to 1999 finding length of season in North 

America to increase on average by 12 days (0.65 days/year) and finding dormancy to occur 4 

days (0.22 days/year) later. Overall across the five phenocam locations the significant trends 

we found align with studies of vegetation phenology over North American grasslands. Jeong 
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et al. (2011) used AVHRR to assess phenology from 1982 to 2008 and found both temporal 

and spatial variations in different phenology trends. They identified a reduction in the trend 

of an earlier onset greenness starting in 2000, while at the same time found an increase rate in 

later onset of dormancy, with both contributing to a lengthening of the growing season. 

While we did have variability across our six field stations, this is to be expected with 

increasing trends in spring  temperature variability for North American grasslands that can 

have an influence on both spring and fall phenology (Lingling Liu & Zhang, 2020). Across 

our study area the results indicate that changing temperature and precipitation patterns are 

driving a significant change in phenology of the grasslands. 

3.5 Conclusion 

We used the machine learning based XGB regression model to predict changes in 

GCC, VCI, NDVI, and EVI2 across the growing season at six phenocam sites. With this 

model we were able to accurately predict 90 to 93 percent of variability in the VI values. This 

allowed us to reconstruct the VIs signals to derive a 38-year timeseries. With these modeled 

timeseries we were able to examine the trending changes in the phenophases at each of the 

grassland field sites. The significant trends we identified agreed with the many AVHRR and 

other satellite-based analysis that have been done for North American grasslands.  We 

believe the methods used to develop our model provide a valuable framework for future work 

modeling vegetation phenology. Using near-surface remote sensing and meteorological data 

provides a valuable validation dataset for satellite-based phenology. Our model can be 

applied to additional phenocam sites, including ecosystem types other than grasslands, to 
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examine the interactions between photoperiod, temperature, and precipitation in these 

regions. Also, additional environmental factors could be considered such as soil moisture or 

nutrient availability. Future work that would help improve our understanding of grassland 

phenology should focus on identifying the spatial and temporal variability that exists in the 

phenology of the North American Great Plains, and how this will affect phenology across the 

region under future climate scenarios. 
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IV. Modeling Near-Surface Phenocam GCC, VCI, NDVI, and EVI2 Across the 

US Great Plains: Using Harmonized Landsat-Sentinel and MODIS Imagery 

4.1 Introduction 

Spatiotemporal changes in vegetation phenology identified in recent decades have 

been linked with changes in the global climate (Hoegh-Guldberg, O., et al., 2018). 

Vegetation phenology provides a measure of ecosystem response to climate change, and the 

feedbacks between vegetation and the climate (Buitenwerf et al., 2015). As vegetation 

phenology changes it has the potential to disrupt various functions within the ecosystem, 

such as the timing of flowering plants becoming mismatched with the life cycle of pollinator 

species (Tierney et al., 2013). Historically vegetation phenology has been monitored at 

individual field sites with species specific observations coordinated by networks such as the 

U.S. National Phenology Network and the Pan European Phenology project, under which 

citizen scientists collect the phenological records of various plant species (Crimmins et al., 

2017; Rodriguez-Galiano et al., 2015). 

Land surface phenology (LSP) involves the use of remotely sensed imagery often 

acquired from a satellite-based platform. Instead of focusing on a single species, or 

individual plants at a field site, LSP integrates entire regions of an ecosystem into a single 

measurement aggregated by the spatial resolution of pixels within remotely sensed imagery 

(Helman, 2018). The spatial resolution of satellite imagery used for LSP can vary in scale 

from meters to kilometers with each pixel representing a patchwork of vegetation. Depending 

on the heterogeneity of a given ecosystem, a single pixel may represent many different 
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species as well as varying life stages within a single species (Snyder et al., 2019). Vegetation 

Indices (VIs) are commonly derived from satellite imagery to provide a unitless measure that 

tracks plant growth and CO2 uptake (Helman, 2018). This includes VIs such as the 

normalized difference vegetation index (NDVI), which exploits the interactions between 

photosynthetic tissues and electromagnetic radiation (Helman, 2018; Jones & Vaughan, 

2010) and has a long history in earth observation (Rouse et al., 1973). Using these VIs it is 

possible to derive various phenophases across the growing season such as the start of season 

in the spring, followed by maturity through the summer, the onset of senescence in the fall, 

and finally dormancy of the vegetation until the beginning of the next growing season 

(Bolton et al., 2020; Gray et al., 2019). 

While acquiring vegetation phenology from satellite-based imagery has been 

conducted using many sensors, difficulties arise when comparing phenophase dates measured 

using imagery with various spatial scales (X. Zhang, Wang, et al., 2017). Differences in 

phenophase dates have been identified, particularly between imagery that ranges in spatial 

resolution from meters to kilometers (Peng, Zhang, et al., 2017; F. Wang et al., 2018; X. 

Zhang, Wang, et al., 2017). The difference in phenophases between sensors of various spatial 

resolutions has been called the “scale effect” and has been identified even when comparing 

the same satellite imagery rescaled to a courser resolution (Licong Liu et al., 2019; Peng, 

Zhang, et al., 2017). Validation efforts have been made between fine and course resolution 

satellite imagery, as well as with ground-based observations and phenological models, and 
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often resulted in a difference between observations of greater than 10 days (X. Zhang, Wang, 

et al., 2017). 

Studies have used ground-based phenology cameras known as phenocams to attempt 

to overcome the challenges with relying on satellite imagery (A. Richardson & Braswell, 

2009). Phenocams can provide valuable information about the vegetation at single locations 

across the globe (Filippa et al., 2018; Hufkens et al., 2012; Petach et al., 2014; Sonnentag et 

al., 2012; Toomey et al., 2015; X. Zhang, Wang, et al., 2017). However, none have attempted 

to couple the temporal and radiometric information in the phenocam imagery. To overcome 

the difficulties in using single site ground-based phenocam observations as a method of 

calibration, we propose a multisite validation method. In this manner, phenocam observations 

from multiple sites are coupled together and radiometric calibration is completed. This aligns 

the multiple phenocam measurements and provides a method to couple observations from 

multiple sites, in which the observations from various sites can be compared against one 

another in a standardised way. 

4.2 Methods and Data 

4.2.1 Study Area 

The Great Plains of North America occupy 281 million ha with 224 million ha 

located within the contiguous U.S. (U.S. Environmental Protection Agency, 2020). The Great 

Plains Ecoregion is subdivided into Level-2 regions that represent the diversity within the 

Great Plains (Fig. 23). The temperate prairies in the east are wetter and contain more 

croplands than the drier west-central and south-central semiarid prairies, while the west-
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central semiarid prairies are on average cooler than south-central semiarid prairies (Omernik 

& Griffith, 2014). 

 

 
Figure 23: The phenocam locations within the study area. Showing the six phenocam 
locations situated within the Great Plains of the contiguous U.S. The MODIS imagery 
boundary is based on the MODIS acquired for this study and the boundary of the Great 
Plains region. Modified from Burke and Rundquist (2021).  

We selected six grassland locations within the Great Plains of the contiguous U.S. 

(Fig. 23) each of which has a phenocam with at least three years of data (Table 5). Three of 

the sites are located within the temperate prairie ecoregion; the Oakville Prairie (Oakville), a 

part of the University of North Dakota, located in Grand Forks County, North Dakota 

(47.8993°N, 97.3161°W); the USGSEROS station at the Earth Resources Observation and 
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Science (EROS) Data Center in South Dakota (43.7343°N, 96.6234°W); and the Nine Mile 

Prairie station (Nine-Mile), a part of the University of Nebraska – Lincoln (40.8680°N, 

96.8221°W), located in Lancaster County, Nebraska. The other three phenocam sites are 

within the south-central semiarid prairie and are a part of the National Ecological 

Observatory Network (NEON). These sites include the NEON.D06.KONZ.DP1.00033 

station (Konza) (39.1008°N, 96.5631°W) located at the Konza Prairie Biological Station near 

Manhattan, Kansas; the NEON.D10.ARIK.DP1.20002 station (ARIK) (39.7582°N, 

102.4471°W) located near the Arikaree River in Yuma County, Colorado; and the 

NEON.D11.OAES.DP1.00033 station (OAES) (35.4106°N, 99.0588°W) located at the 

Klemme Range Research Station in Washita County, Oklahoma. The six sites represent a 

1,470 km latitudinal transect through the Great Plains region ranging from 35.4°N to 47.9°N. 

Table 5. Years of data available for each of the phenocam site locations. 

Station Name Years with available data 

Oakville 2016 - 2019 

USGSEROS 2015 - 2017, 2019 

Nine Mile Prairie 2016 - 2019 

NEON.D06.KONZ.DP1.00033 2017 - 2019 

NEON.D10.ARIK.DP1.20002 2017 - 2019 

NEON.D11.OAES.DP1.00033 2017 - 2019 
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4.2.2 Phenocam Data 

We choose to derive four VIs from the phenocam imagery at the six field stations. 

GCC (Eq. 1) is a proportional measure of relative ‘greenness’ that was originally developed 

for use with phenocams because of its relative stability under changing illumination 

conditions (A. Richardson & Braswell, 2009). GCC has be used in a diverse array of 

ecosystem types, and can be measured using any digital camera capable of capturing a color 

(red, green, and blue) image (A. D. Richardson, 2019). VCI (Eq. 2) was created as a 

nonlinear transformation of GCC that has a higher dynamic range relative to GCC by 

contrasting the green band to the sum of red and blue (X. Zhang et al., 2018).  NDVI (Eq. 3) 

has a long history in Earth Observation (Rouse et al., 1973), and has been derived from 

phenocams that are sensitive to near-infrared wavelengths (Burke & Rundquist, 2021; Filippa 

et al., 2018; Petach et al., 2014; A. D. Richardson, 2019). EVI2 (Eq. 4) was developed as an 

adjustment to NDVI, with an enhanced ability to remove soil background noise, and 

atmospheric effects (Jiang et al., 2008). 

𝐺𝐺𝐺𝐺𝐺𝐺 =
𝐺𝐺𝐺𝐺𝑅𝑅𝑅𝑅𝐺𝐺

𝐵𝐵𝐵𝐵𝐵𝐵𝑅𝑅 + 𝐺𝐺𝐺𝐺𝑅𝑅𝑅𝑅𝐺𝐺 + 𝑁𝑁𝑅𝑅𝑅𝑅
 (1) 

𝐷𝐷𝐺𝐺𝐷𝐷 =
𝐺𝐺𝐺𝐺𝑅𝑅𝑅𝑅𝐺𝐺

𝐵𝐵𝐵𝐵𝐵𝐵𝑅𝑅 + 𝑁𝑁𝑅𝑅𝑅𝑅
 (2) 

𝑁𝑁𝐷𝐷𝐷𝐷𝐷𝐷 =
𝑁𝑁𝐷𝐷𝑁𝑁 − 𝑁𝑁𝑅𝑅𝑅𝑅
𝑁𝑁𝐷𝐷𝑁𝑁 + 𝑁𝑁𝑅𝑅𝑅𝑅

 (3) 

𝐸𝐸𝐷𝐷𝐷𝐷2 = 2.5
𝑁𝑁𝐷𝐷𝑁𝑁 − 𝑁𝑁𝑅𝑅𝑅𝑅

𝑁𝑁𝐷𝐷𝑁𝑁 + 2.4 ∗ 𝑁𝑁𝑅𝑅𝑅𝑅 + 1
 (4) 
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To calculate each of the chosen VIs from the phenocam imagery, we first downloaded 

all available imagery from the six phenocam locations (phenocam.sr.unh.edu). We then 

applied the exposure correction to both the color and mixed color-infrared imagery to extract 

the near-infrared and three color bands (Petach et al., 2014). Using the image digital numbers 

(DNs) for the red, green blue (RGB) and near-infrared (NIR) bands the four VIs were 

calculated using Eq. 1, 2, 3 and 4 for each day of the year in which phenocam imagery was 

available (Table 5). Finally, the phenocam VIs were linearly scaled to Gaussian Process 

Regression modeled VIs calculated with Harmonized Landsat-Sentinel surface reflectance 

imagery (described in detail in Burke and Rundquist 2021). This standardised the VI values 

between each phenocam site, allowing them to be used together within a single regression 

model. 

4.2.3 MODIS and HLS Imagery 

MODIS imagery was acquired from the U.S. Geological Survey through the 

Application for Extracting and Exploring Analysis Ready Samples (AρρEEARS). We 

acquired all available imagery for the MOD09GA v006 product from January 1, 2015, to 

December 31, 2019, using the boundary shown in Fig. 23. From the MOD09GA product we 

used the provided blue, green, red, and near-infrared (NIR) color bands, bands 3,4,1 and 2, 

with radiometric, and atmospheric correction providing measures of surface reflectance with 

a 500m x 500m spatial resolution. These images cover 146 million ha within the Great Plains 

region and in total 1,816 images were recorded over the 5-year period. 



90 
 

We acquired Harmonized Landsat Sentinel-2 (HLS) from the National Aeronautics 

and Space Administration’s (NASA) data portal (https://hls.gsfc.nasa.gov/data/v1.4/). We 

selected the imagery tiles covering each of the six phenocam sites and downloaded all 

imagery available for each site starting January 1, 2013 ending on December 31, 2019. This 

included imagery taken from both the Sentinel-2 S30, and the Landsat-8 L30 products, 

providing a 30m x 30m spatial resolution. Each of the HLS images covers approximately 

1,211,000 ha of land, and in total we acquired 2,027 Landsat-8 L30 images and 2,385 

Sentinel-2 S30 images. We used the blue, green, red and NIR color bands for both sets of 

imagery, with Landsat-8 bands 2,3,4, and 5, and Sentinel-2 bands 2,3,4 and 8. 

4.2.4 Cloud Removal 

To reduce cloud contamination in both the MODIS and HLS imagery we used the 

quality bands to identify pixels in the imagery that contained cloud contamination and either 

removed these images from the dataset or modeled the pixel values. Images were removed 

from the dataset if 500 or fewer pixels were determined to be cloud free, or if after 

attempting to model cloud-contaminated pixels the images were visually inspected and found 

to still contain cloud contamination. To model pixels that contained cloud cover, images 

were aligned in sequential order and processed in that order. For each image, the 20 images 

prior and 20 images post were used to build a regression model. Using an XGB regression 

model (Chen & Guestrin, 2016), cloud-free pixels from the image being modeled were used 

in conjunction with cloud-free pixels from the 40 other images as a training dataset. We 

trained our XGB models using a randomly selected 80 percent of the available cloud free 
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pixels, leaving 20 percent for model validation. To help prevent overfitting of the model, and 

to prune any branches with a negative gain, we set lambda to 1 and both alpha and gamma to 

0. We also set the learning rate to 0.1, max depth to 10 and number of estimators to 50,000. 

We choose parameters that would help prevent overfitting of the model, and were 

recommended to produce a more conservative algorithm (Chen & Guestrin, 2016). 

Subsampling, also known as bootstrap aggregating, was used so that a random selection of 

half (subsample = 0.5) of the training samples were used to grow each tree with gradient-

based selection (Chen & Guestrin, 2016; H. Zhang et al., 2019). Using the XGB models, we 

iterated though all 1,816 MODIS images, and then through each phenocam site’s HLS 

images totalling 4,412 images. We followed up with a visual inspection of all imagery and 

removed images if they still contained cloud cover pixels. 

4.2.5 Imagery Fusion 

To increase the temporal resolution of the HLS imagery, we used the MODIS 

imagery with the Flexible Spatiotemporal Data Fusion (FSDAF) model to predict HLS 

imagery for any day in which MODIS imagery were available but not HLS imagery (X. Zhu 

et al., 2016). This process was done at all six phenocam locations independent of one another 

from January 1, 2015, to December 31, 2019. We paired together the HLS and MODIS 

imagery and identified all days in which the higher resolution HLS imagery was already 

available. We also clipped the MODIS imagery to align with the spatial extent of the HLS 

image. Then, we identified days with a MODIS image but no HLS image and used this list to 

iterate through and execute the FSDAF model. To run the model, a single pair of 
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HLS/MODIS images was needed along with the MODIS image for the day during which the 

fused image was to be generated. For each day without an HLS image, the closest paired 

HLS and MODIS images chronologically were used. This produced a fused HLS-MODIS 

image for any day of year in which no HLS imagery was available and increased the 

temporal resolution of the HLS imagery timeseries. Across the six phenocam locations over 

the five-year period 9,532 FSDAF fused images were produced. 

4.2.6 Modeling Phenocam VIs Using XGB Decision Trees 

Using the HLS, MODIS and the FSDAF fused images we calculated the four VIs for 

each image. To do this we used Eq. 1,2,3 and 4 to calculate each of the VIs for each pixel 

within the satellite images. This produced a timeseries for each of the VIs for both the HLS 

and FSDAF imagery at each phenocam site, as well as the MODIS imagery. From here we 

used the HLS and FSDAF imagery to model the phenocam VIs using an XGB regression 

model. To do this we first needed to calculate a single value for each image across all six 

phenocam sites. We used Inverse Distance Weighting (IDW) (Shepard, 1968) with the 

phenocam imagery footprints to calculate a single VI value for each image, following the 

same procedure as used by Burke and Rundquist (2021). This provided a timeseries of values 

for the four VIS across the six phenocam sites.  

For each of the four VIs we produced an XGB regression model (Chen & Guestrin, 

2016) capable of predicting the difference between the phenocam VIs and the HLS VIs 

values. For each of the four VIs, the model was trained using the VIs values, and the 

accumulated VIs values, as well as the day of year (DOY) for each image. The accumulated 
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VIs are calculated by adding all previous VI values within a given year up to and including 

the date for a given image. On January 1 of any given year this value was reset to zero and 

then the VI was accumulated throughout the year. Using the accumulated VIs values, and the 

DOY we then trained the XGB model to predict the phenocam VI value. We trained our 

XGB models using a randomly selected 80 percent of the available phenocam pixels, leaving 

20 percent for model validation. To help prevent overfitting of the model, and to prune any 

branches with a negative gain, we set lambda to 1 and both alpha and gamma to 0. We also 

set the learning rate to 0.1, max depth to 20 and number of estimators to 50,000. 

Subsampling, also known as bootstrap aggregating, was used so that a random selection of 

half (subsample = 0.5) the training samples were used to grow each tree with gradient-based 

selection (Chen & Guestrin, 2016; H. Zhang et al., 2019).  

We used the XGB models to then predict the phenocam VIs values across the MODIS 

imagery given the MODIS VIs values and the DOY. To test the ability of the XGB models to 

predict pixel values at locations the model was not trained on, we retrained the XGB models 

for each VI withholding one of the phenocam sites, and then used this site as the validation 

dataset. We did this six times for each of the VIs, excluding each of the six phenocam 

locations. This gave us a measure of how well the XGB models were able to account for 

locations they were not trained with, which for the MODIS imagery is any pixel other than 

those at the six phenocam locations. 
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4.2.7 Phenophase Detection 

To measure phenophase changes across the MODIS imagery using both the standard 

and modeled VIs, we used the protocols provided for phenophase detection with MODIS 

imagery (Gray et al., 2019). We identified seven phenophase stages throughout a growth 

cycle, starting with greenup in the spring, followed by midgreenup, maturity, peak greenness, 

senescence, midgreendown, and ending with dormancy in the fall. This process was carried 

out for each pixel of the MODIS imagery and done for each of the four VIs. A natural cubic 

spline (Drury, 2020) was fit to the five-year time series. To find the optimal number of knots 

to fit the spline we used Akaike’s Information Criterion (AIC) to balance under-overfitting of 

the model (Hurvich et al., 1998). To do this we randomly set aside one third of the dataset 

and fit the spline starting at 5 knots (1 knot per year of data). Using the AIC we measured the 

models fit against the randomly removed data and selected the number of knots that produced 

the lowest AIC value. The spline was then re-fit to the entire dataset using the determine 

optimal number of knots. 

Valid vegetation cycles were identified from the spline models using methods similar 

to the CMCD12Q2 product (Gray et al., 2019). Local minima and maxima were identified 

for each year with a 6-month overlap at the beginning and end of the year. The maxima were 

examined for validity as a peak in vegetation growth while the minima were examined to be 

either the start or end of a vegetation cycle. However, the methods used for the CMCD12Q2 

product was produced for EVI2 specifically and has a set value of 0.1 required in the 

amplitude of any greenup or greendown period for it to be considered a valid cycle. The three 
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other VIs have a varying range of values that do not necessarily align with EVI2. Instead of 

using a constant value of 0.1, we modified this step by requiring greenup and greendown 

periods to have an amplitude that is at least 70 percent that of the current year’s amplitude. 

Once the valid growth periods were identified we then extracted the seven phenophase 

periods using the same methods as the CMCD12Q2 product. The peak is reached at the 

maximum value for the VI. The greenup, mid-greenup, and maturity occur at a 15, 50, and 90 

percent increase in amplitude, while senescence, mid-greendown, and dormancy occur after 

the peak as amplitude decreases past 90, 50, and then 15 percent. Using these values, we 

were able to produce an image for each phenophase across the five years of data for the four 

VIs. This resulted in a total of 140 images with 7 phenophases across 5 years of data and 4 

different VIs. 
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4.3 Results 

4.3.1 XGB Models 

 
Figure 24: Final XGB Models for predicting the four VIs, showing the relationship between 
the predicted VI values and the actual values taken from the phenocam imagery. The dashed 
black line depicts a 1:1 line showing a perfect fit. 

Using the four VIs we modeled the six phenocam sites to predict the VIs values at 

any given location across the study region. This produced four models, one for each of the 

VIs (Fig. 24). The GCC model produced had the highest R2 at 0.894 with RMSE of 0.0135 
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while EVI2 had the lowest R2 at 0.774 with a RMSE of 0.0255. The NDVI had the largest 

RMSE at 0.0537 with R2 at 0.814 and VCI fell in between with R2 of 0.879 and RMSE of 

0.0389. By separating each of the phenocam sites we were able to evaluate how well each 

sites data fit to a site that was not included in the training data. While this does not provide a 

direct assessment of the models created using all available phenocam data, it provides a good 

assessment of how well these models performed at sites not included in training the model 

(Figs. 25, 26, 27, and 28). Across the four VIs, and the six phenocam sites on average the R2 

value was 0.5953 with an average RMSE of 0.0617. The best performing site was GCC at 

Oakville with an R2 0.808 and an RMSE of 0.0222, while the worst performing site was 

EVI2 at Nine-Mile with an R2 0.207 and a RMSE of 0.0678. 

 
Figure 25: How each of the XGB models preformed after being trained using all data except 
for one of the six phenocam sites. The site listed in each scatterplot is the site that the model 
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was not trained with and was instead fit against. This shows how well the model was able to 
predict GCC values at a location in which the model was not previously trained. 

f.

OAES

 

 

 

 

 

0.20 0. 0
Actual NDVI

0.40

M
od

el
ed

N
DV

I

0.40

-0.40 0.20
Actual NDVI

0.400.00

0.20

0.10

-0.02

-0.40
-0.20

R2 = 0.4472
RMSE = 0.1288

 
Figure 26: How each of the XGB models preformed after being trained using all data except 
for one of the six phenocam sites. The site listed in each scatterplot is the site that the model 
was not trained with and was instead fit against. This shows how well the model was able to 
predict NDVI values at a location in which the model was not previously trained. 
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Figure 27: How each of the XGB models preformed after being trained using all data except 
for one of the six phenocam sites. The site listed in each scatterplot is the site that the model 
was not trained with and was instead fit against. This shows how well the model was able to 
predict EVI2 values at a location in which the model was not previously trained. 
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Figure 28: How each of the XGB models preformed after being trained using all data except 
for one of the six phenocam sites. The site listed in each scatterplot is the site that the model 
was not trained with and was instead fit against. This shows how well the model was able to 
predict VCI values at a location in which the model was not previously trained. 

4.3.2 Histograms of Original and Modeled Phenophase Detection 

 Each of the phenophases for the four VIs were graphed so that each 

phenophase was presented with a separate graph for each year as well as separate graphs 

between the original and the modeled VI values. The four sets of graphs, one set for each VI 

are presented in Figs. 29, 30, 31, 32 and Appendix D. Across the graphs the modeled VIs 

often have peaks occurring closer together than the original VIs with peaks more spread 

across the growing season. For example, in Fig. 25 the NDVI values in the modeled graphs 
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cluster togethers with peaks between DOY 100 and 300, while the original graphs spread out 

with peaks covering a larger range of values across the year between DOY 50 and 350. 

Values of zero occur for all phenophases and across all the graphs, these are pixels that 

contain no data occurring on the edge of the images in the empty pixels. Values less than 

zero are an error in the modeling procedure in which a given pixel is predicted to have 

phenophases occurring before the first day of the year. 
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Figure 29: Histogram of NDVI-based phenophase values, showing the predicted date for the 
seven phenophases starting with greenup in the spring and dormancy in the fall. The left 
column of graphs shows NDVI values from the original MODIS imagery, while the right 
column shows the predicted NDVI values. The two columns start with 2015 at the top and 
end with 2019 at the bottom.  
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Figure 30: Histogram of GCC-based phenophase values, showing the predicted date for the 
seven phenophases starting with greenup in the spring and dormancy in the fall. The left 
column of graphs shows GCC values from the original MODIS imagery, while the right 
column shows the predicted GCC values. The two columns start with 2015 at the top and end 
with 2019 at the bottom.  
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Figure 31: Histogram of EVI2-based phenophase values, showing the predicted date for the 
seven phenophases starting with greenup in the spring and dormancy in the fall. The left 
column of graphs shows EVI2 values from the original MODIS imagery, while the right 
column shows the predicted EVI2 values. The two columns start with 2015 at the top and end 
with 2019 at the bottom.  
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Figure 32: Histogram of VCI-based phenophase values, showing the predicted date for the 
seven phenophases starting with greenup in the spring and dormancy in the fall. The left 
column of graphs shows VCI values from the original MODIS imagery, while the right 
column shows the predicted VCI values. The two columns start with 2015 at the top and end 
with 2019 at the bottom.  
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4.3.3 Phenophase Maps 

 

Figure 33: Maps showing the date of the first four NDVI phenophases for both the standard 
MODIS imagery and the modeled MODIS imagery in 2018. 
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Figure 34: Maps showing the date of the last three NDVI phenophases for both the standard 
MODIS imagery and the modeled MODIS imagery in 2018. 
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Figure 35: Maps showing the date of the first four GCC phenophases for both the standard 
MODIS imagery and the modeled MODIS imagery in 2018. 
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Figure 36: Maps showing the date of the last three GCC phenophases for both the standard 
MODIS imagery and the modeled MODIS imagery in 2018. 
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Using the five years of data across the four different VIs produces forty sets of maps 

(Figs. 33, 34, 35, 36 and Appendix D). Each of these map sets show how the seven 

phenophases vary between the five years and across the four VIs. The map sets also show the 

variation between the standard imagery and the modeled imagery. In the 2018 NDVI 

Imagery (Figs. 29 and 30) we found the modeled datasets often had fewer extreme values 

across the pixel values. This was particularly true in the southwest corner of the maps that 

tended to have higher pixel values across the phenophases. Greenup in the modeled NDVI 

tended to occur earlier in the year, while dormancy in the fall happened earlier for most of 

the modeled pixels. The 2018 GCC followed similar trends as NDVI with the modeled pixels 

having fewer extreme values, particularly in the southwest where the standard pixels had 

much higher values.     

 

4.4 Discussion 

Using a combination of HLS and MODIS satellite imagery we were able to produce 

near daily measurements of the six phenocam locations and the surrounding study region. 

With blue, green, red, and NIR color information available we calculated four VIs. This 

produced a total of five years of data for each of the VIs from 2015 to 2019, or twenty years 

of data total. Using the timeseries for each of the four VIs we then predicted the dates for 

greenup, midgreenup, maturity, peak greenness, senescence, midgreendown and dormancy.  

In recent years the number of available phenocam’s within the North American 

prairies has increased to cover several ecozones within the region (Seyednasrollah et al., 



111 
 

2019). This is an improvement over previous studies that found this region lacking in 

phenocam data (Cui et al., 2020). Using the improved spatial coverage of phenocam data in 

the region in conjunction with the temporal resolution of our modeled phenocams we 

calculated VIs over five growing seasons. This provides a great improvement both spatially 

and temporally over methods that often rely on data from a limited spatial region or temporal 

timeline (Cui et al., 2020; Walker et al., 2014).  

While satellite sensors such as AVHRR, MODIS and VIIRS can cover a much larger 

region, including being used for global coverage (X. Zhang, Liu, et al., 2017), it is not able to 

account for regional differences present in fine-resolution satellite imagery. Instead, we 

developed a method that has allowed us to capture the fine spatial details present in Landsat 

and Sentinel-2 data, while at the same time we were able to couple together multiple 

phenocam datasets from across the Great Plains. This can then be used to improve the spatial 

and temporal resolution of models depending entirely on MODIS imagery (Ganguly et al., 

2010). This may provide some insights in global phenology dynamics that have similar 

aspects (Cuizhen Wang et al., 2015), or in interpreting phenology metrics within North 

America (Cui et al., 2019). 

Using imagery from several phenocams has been done to incorporate imagery from 

multiple phenocam sites (C. J. Watson et al., 2019). However, this is the first study that has 

attempted to fuse together the spatial and spectral information across multiple phenocam 

sites. Having fused imagery across multiple phenocam locations provides important 

correction information, allowing the imagery to be compared between the phenocam sites, 
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and providing coupled ground control locations which can be used to predict VIs using a 

calibrated method across the study region. With the fused imagery we were then able to 

predict VI values at any location in our study region for each DOY. 

Examining Figures 25, 26, 27, and 28 shows the quality in which each of the VIs 

were predicted by our model. EVI2 appears to have the most variability across its values, 

with GCC, NDVI, and VCI maintaining average R2 values of 0.767, 0.597, 0.726 across the 

models when comparing with EVI2 having an average R2 of 0.325. This suggest that EVI2 is 

more sensitive to variations in the VI values when comparing with the other three VIs. 

However, EVI2 has been used to monitor phenology across North America, and provides a 

valuable metric on the growth of vegetation in the region (Jiang et al., 2008; X. Zhang et al., 

2020). Of the four VIs, GCC had the best R2 values ranging from 0.82 to 0.73, providing a 

higher degree of fit between the XGB models and the predicted phenocam GCC values. GCC 

has traditionally been used as a VI taken from phenocam imagery, and because it is 

uncalibrated, however relatively stable under changing illumination conditions (A. D. 

Richardson et al., 2018), it not typically used for satellite imagery (Cui et al., 2019). 

However, by coupling together spectral information from both satellite and multiple 

phenocam data sources we were able to calibrate the imagery and derive GCC data across 

our study area. 

 We predicted the seven phenophases across the five years of imagery for each of the 

VIs (Figs. 29, 30, 31, and 32). Using this information, we were then able to compare each VI 

in the original MODIS and HLS imagery with the modeled imagery. Across the five years 
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and four VIs the modeled VIs typically had a smaller range of values and was better able to 

reduce the variation in the predicted VIs. However, some variations still existed within the 

histograms, and did not correct for all errors. One notable error in our phenophase detection 

was in both the original and modeled phenophases for 2019 across the four VIs, a large 

portion of the fourth VI always occurred at the end of the year instead of in the middle where 

it is expected. This did not occur for any other VIs and is an error in the VI detection process. 

Otherwise, both the original and modeled 2019 VIs appear to have properly predicted the six 

other phenophases across 2019. 

The four VIs were used to map the values in the standard MODIS imagery as well as 

the modeled VI values across the five years (Figs. 33, 34, 35, 36 and Appendix D). This 

provided the expected DOY value that the phenophase occurred across the seven 

phenophases and using the four different VIs for 2015, 2016, 2017, 2018, and 2019. This 

produced 140 maps representing the modeled phenophase values for each year, across the 

four VIs, for the seven different phenophases (Figs. 29, 30, 31, 32 and Appendix D). Among 

the four VIs we found many similar trends over the study region with the modeled 

phenophase VIs often reducing or smoothing many of the extreme values found in the 

original VIs. Peng, Wu, et al. (2017) used NDVI and EVI to predict spring phenophase dates 

across the U.S. and found the two often predicted very similar transition dates. This was 

similar for our study in which the VIs often predicted similar transition dates for the modeled 

VIs. 
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Using HLS data to predict phenology in grasslands has been attempted in the past 

with some success (Pastick et al., 2020). However, often the limited temporal resolution of 

the data has made it challenging to predict VI values across the growing season, or limits the 

spatial resolution to only specific vegetation types (Pastick et al., 2020). Limited spatial 

resolution has also been a challenge in the Great Plains region with the largest difficulty 

presented by a small spatial and temporal data collection period (Q. Zhou et al., 2019).  

Using our method, we attempted to overcome these challenges by coupling together data 

from multiple spatial and temporal resolutions. This provides a much stronger control on the 

phenology signal across the study area and normalizes differences between phenocam 

locations. 

4.5 Conclusion 

Using our phenology modeling approach, we were able to couple together data from 

both multiple spatial and temporal resolutions using MODIS, Landsat, Sentinel-2 and 

phenocam datasets. This allowed us to model phenology across our study region over a five-

year period. With this we used XGB to model the phenology signal and were able to predict 

changes in grasslands across the Great Plains Region.    

A challenge of our approach is using the method in a spatially complex location 

where multiple canopies are present and would interfere with one another. Y. Liu et al. 

(2017) found this when a grass understory mixed with a tree canopy that increased the 

complexity of the phenology signal. For our study region the vegetation is largely a single 

grassland or cropland canopy. However, croplands do introduce a complexity in which 
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cropland fields do not typically follow the same phenology signal as grasslands. Since we 

only based our method on grassland phenology, we expect this presented many of the errors 

in non-grassland locations. In the future this may be addressable by the addition of a 

phenocam dataset taken from agricultural locations, such as has been done for agricultural 

areas in Kazakhstan (De Beurs & Henebry, 2004).  

Grasslands provide a relatively simple landscape when compared with forested areas 

that can have multiple canopy layers (Peng et al., 2021; A. D. Richardson et al., 2009). This 

provided us a more simplistic location to develop our phenocam modeling method. 

Transitioning these methods to a forest or location with multiple canopies would require 

further research into methods that can separate the phenology signal across complex 

vegetation regimes. While studies have been conducted to use digital repeat photography in 

these regions (Liang et al., 2011; Melaas, Friedl, et al., 2016; Sonnentag et al., 2012). Future 

research is needed in mixed canopy locations to see if these phenology signals can be 

separated, and if our modeling approach can be applied. Perhaps by developing a method that 

can produce multiple canopy datasets across complex environments such as these. In 

addition, future research can focus on refining and improving the quality of the modeled 

phenology. This includes using multiple vegetation types, such as grasslands and croplands, 

to determine if the accuracy of the modeled phenology can be improved when aggregating 

signals from various landcovers. 
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V. Discussion 

In Ch. 2 we (Burke & Rundquist, 2021) scaled phenocam imagery to align each of the 

field locations with one another. To do this we fit a Gaussian Process (GP) model to each of 

six phenocam locations. Then we used a linear regression to align our GCC, NDVI, and 

EVI2 models with Harmonized Landsat Sentinel-2 satellite imagery (HLS). Later for our Ch. 

3 and Ch. 4, we also carried out this same process using VCI to provide a similar metric for 

GCC, as we had EVI2 that uses the same spectral bands as NDVI. This provided a 

comparable band that could be used in discussion of the four VIs. Having the GP models, we 

were then able to adjust the VIs at each of the phenocam sites to align them with the HLS 

imagery and from here produce scaled VIs at the six locations that are comparable and can be 

used within a single model having scaled magnitudes.  

The methods carried out in Ch. 1 were necessary for the two following chapters 

because the dataset produced was used in both Ch. 3 and Ch. 4. It provided the initial 

phenocam dataset taken across the six field locations and allowed them to be used within a 

single model since they were scaled to match one another. This chapter was published in 

(Burke & Rundquist, 2021), which was an important step in having the methods in the paper 

peer reviewed, before carrying on with the next stages of the research. The GP models 

produced did range in quality of fit to the raw phenocam imagery. Phenocam imagery can be 

quite noisy with R2 of 0.73 at the Oakville phenocam for EVI2. Future research into methods 

to control model errors or improve modeling the phenocam site would be useful in producing 
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more accurate models and provide a stronger connection to the true phenology signal at the 

field site. 

In Ch. 3 we used the scaled GCC, VCI, NDVI and EVI2 from Ch. 1 to model the 

vegetation growth over the six years. Using DAYMET weather data we either used already 

available weather variables or derived accumulated snow water equivalent, temperature, and 

precipitation. We used the available weather data from 1981 to 2019 to predict the weather 

variables across 38 years. Using this dataset, we were able to model the weather variables at 

the six phenocam locations using XGBoost. Using the five years of data we identified the 

transition dates between each of the phenophases. Across all four VI models, we found day 

length, GDD with a base of 0°C to be the two most important variables, while other variables 

that ended up in the models includes growing degree days with a base temperature of 5°C, 

minimum temperature, 30-day of accumulated precipitation, and minimum temperature. 

Using our developed 38-year model we were able to predict the phenology signal across the 

six phenocam sites and identify and significant trends in the models. We found 14 of the VIs 

across the five of the six phenocam sites had significant trends in phenophase transitions, 

excluding the Nine-Mile station. This chapter identified phenology trends at the six 

phenocam stations within the North American Great Plains. It provides a valuable method to 

identify phenophase transition and to do this with coupled together datasets, and to extend 

the phenology datasets into the past using historical weather data as a substitute for 

phenocam imagery. 
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Ch. 3 provides the review of the temporal weather data, examining how the VIs at the 

six phenocam sites changed across 38 years. It allows us to examine the vegetation even 

before the phenocams were available at the six field locations. This means that the data 

before 2015 was entirely synthetic, based on historical weather data, and is not taken from 

imagery. Having the imagery may provide insight into a changing vegetation dynamic that 

occurred over the 38 years, but without the ability to get this historic imagery, we felt our 

method was the best option. The XGB model we used predicted 90 to 93 percent of the 

variability in the four VIs. Further refinement in the modeling procedure, or additional 

weather data, could improve the model accuracy. Other weather data may be available over 

this time that could help improve the accuracy of the model as well. 

In Ch. 4 we used MODIS, Harmonized Landsat-Sentinel-2, and phenocam imagery, 

to model phenology across a portion of the Great Plains region. To do this we relied on 1,816 

MODIS, and 2,027 HLS images taken from the six phenocam locations from 2015 to 2019. 

We removed cloud contaminated imagery from the modeling process and the carried-out 

imagery fusion to produce synthetic HLS imagery from the MODIS imagery. XGB was used 

to predict the VIs values across the five years. Using both standard and modeled VIs we 

predicted the phenophase dates across the 5 years of data, and across the four VIs. We found 

GCC produced the best R2 values at 0.894, while EVI2 had the lowest R2 values at 0.774. In 

testing each of the VIs by removing one of the six datasets before training we identified a 

similar trend where GCC was the best performing VI with an average R2 of 0.734 while 

NDVI had the lowest average R2 of 0.587. 
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 We were able to model the four VIs across the Great Plains region with R2 values 

ranging from 0.894 to 0.774. This paper provided the spatial method for modeling phenology 

across the Great Plains region. With this method we were able to predict the VIs values at 

any given location using the Harmonized Landsat-Sentinel-2 imagery. Our standard and 

modeled VIs were similar performing with the modeled VIs often having a lower spread in 

values suggesting a better control on VI values. Both the standard and modeled VIs did 

however have model errors in the 2019 VIs, where phenophase number 4, representing peak 

greenness often occurred at the end of the year, instead of the middle of the season where it 

was expected. Future work for this method may require incorporating data from additional 

locations or satellite sensors. Vegetation growth data can have a high degree of variability 

and incorporating more data, including data from outside the grasslands, such as the 

croplands may provide a more accurate description of the vegetation dynamics.  
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APPENDICES 

Appendix A: HLS GP Results 

 
Figure A.1: HLS GP model for the USGSEROS station, showing the median predicted value 
fit to the seven years of IDW HLS data. 
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Figure A.2: Scatter Plot of Actual IDW HLS VI values against the GP modeled HLS VI 
values for the USGSEROS station. The dashed line represents an ideal one-to-one linear fit 
where y=x (1:1 line). 
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Figure A.3: HLS GP model for the Nine-Mile station, showing the median predicted value fit 
to the seven years of IDW HLS data. 
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Figure A.4: Scatter Plot of Actual IDW HLS VI values against the GP modeled HLS VI 
values for the Nine-Mile station. The dashed line represents an ideal one-to-one linear fit 
where y=x (1:1 line). 
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Figure A.5: HLS GP model for the Konza station, showing the median predicted value fit to 
the seven years of IDW HLS data. 
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Figure A.6: Scatter Plot of Actual IDW HLS VI values against the GP modeled HLS VI 
values for the Konza station. The dashed line represents an ideal one-to-one linear fit where 
y=x (1:1 line). 
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Figure A.7: HLS GP model for the ARIK station, showing the median predicted value fit to 
the seven years of IDW HLS data. 
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Figure A.8: Scatter Plot of Actual IDW HLS VI values against the GP modeled HLS VI 
values for the ARIK station. The dashed line represents an ideal one-to-one linear fit where 
y=x (1:1 line). 
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Figure A.9: HLS GP model for the OAES station, showing the median predicted value fit to 
the seven years of IDW HLS data. 
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Figure A.10: Scatter Plot of Actual IDW HLS VI values against the GP modeled HLS VI 
values for the OAES station. The dashed line represents an ideal one-to-one linear fit where 
y=x (1:1 line). 
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Appendix B: Phenocam VIs Comparing Observations with GP Models 

 

 
Figure B.1: VIs calculated for the USGSEROS station, showing linear regressions between 
both the phenocam DN 90th percentile VIs and the scaled phenocam VIs against the scaled 
GP modeled HLS VIs. The dashed line shows an ideal one-to-one linear fit where y=x (1:1 
line). 
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Figure B.2: VIs calculated for the Nine-Mile station, showing linear regressions between 
both the phenocam DN 90th percentile VIs and the scaled phenocam VIs against the scaled 
GP modeled HLS VIs. The dashed line shows an ideal one-to-one linear fit where y=x (1:1 
line). 
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Figure B.3: VIs calculated for the ARIK station, showing linear regressions between both the 
phenocam DN 90th percentile VIs and the scaled phenocam VIs against the scaled GP 
modeled HLS VIs. The dashed line shows an ideal one-to-one linear fit where y=x (1:1 line). 
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Figure B.4: VIs calculated for the OAES station, showing linear regressions between both the 
phenocam DN 90th percentile VIs and the scaled phenocam VIs against the scaled GP 
modeled HLS VIs. The dashed line shows an ideal one-to-one linear fit where y=x (1:1 line). 
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Appendix C: Linear Regression Modeling the Trends for the XGB Modeled 

Phenophases Across the Six Phenocam Sites   

 
Appendix C.1: The day of year (DOY) in which the greenup phenophase was detected for the 
four VIs across the six phenocam sites. Showing a linear regression for each of the phenocam 
sites with all four VIs used in the regression model. 
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Appendix C.2: The day of year (DOY) in which the mid-greenup phenophase was detected 
for the four VIs across the six phenocam sites. Showing a linear regression for each of the 
phenocam sites with all four VIs used in the regression model. 
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Appendix C.3: The day of year (DOY) in which the maturity phenophase was detected for 
the four VIs across the six phenocam sites. Showing a linear regression for each of the 
phenocam sites with all four VIs used in the regression model. 
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Appendix C.4: The day of year (DOY) in which the peak phenophase was detected for the 
four VIs across the six phenocam sites. Showing a linear regression for each of the phenocam 
sites with all four VIs used in the regression model. 
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Appendix C.5: The day of year (DOY) in which the senescence phenophase was detected for 
the four VIs across the six phenocam sites. Showing a linear regression for each of the 
phenocam sites with all four VIs used in the regression model. 
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Appendix C.6: The day of year (DOY) in which the mid-greendown phenophase was 
detected for the four VIs across the six phenocam sites. Showing a linear regression for each 
of the phenocam sites with all four VIs used in the regression model. 
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Appendix C.7: The day of year (DOY) in which the dormancy phenophase was detected for 
the four VIs across the six phenocam sites. Showing a linear regression for each of the 
phenocam sites with all four VIs used in the regression model. 
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Appendix C.8: The length of time in days between the greenup and maturity phenophases for 
the four VIs across the six phenocam sites. Showing a linear regression for each of the 
phenocam sites with all four VIs used in the regression model. 
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Appendix C.9: The length of time in days between the maturity and senescence phenophases 
for the four VIs across the six phenocam sites. Showing a linear regression for each of the 
phenocam sites with all four VIs used in the regression model. 
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Appendix C.10: The length of time in days between the senescence and dormancy 
phenophases for the four VIs across the six phenocam sites. Showing a linear regression for 
each of the phenocam sites with all four VIs used in the regression model. 
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Appendix C.11: The length of time in days between the greenup and dormancy phenophases 
for the four VIs across the six phenocam sites. Showing a linear regression for each of the 
phenocam sites with all four VIs used in the regression model. 
 

  



145 
 

Appendix D: Phenophase Dates Across the VIs and Five Years 

 

Figure A1: Maps showing the date of the first four NDVI phenophases for both the 
standard MODIS imagery and the modeled MODIS imagery in 2015. 
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Figure A2: Maps showing the date of the last three NDVI phenophases for both the standard 
MODIS imagery and the modeled MODIS imagery in 2015. 
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Figure A3: Maps showing the date of the first four NDVI phenophases for both the standard 
MODIS imagery and the modeled MODIS imagery in 2016. 
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Figure A4: Maps showing the date of the last three NDVI phenophases for both the standard 
MODIS imagery and the modeled MODIS imagery in 2016. 
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Figure A5: Maps showing the date of the first four NDVI phenophases for both the standard 
MODIS imagery and the modeled MODIS imagery in 2017. 
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Figure A6: Maps showing the date of the last three NDVI phenophases for both the standard 
MODIS imagery and the modeled MODIS imagery in 2017. 
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Figure A7: Maps showing the date of the first four NDVI phenophases for both the standard 
MODIS imagery and the modeled MODIS imagery in 2019. 
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Figure A8: Maps showing the date of the last three NDVI phenophases for both the standard 
MODIS imagery and the modeled MODIS imagery in 2019. 
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Figure A9: Maps showing the date of the first four GCC phenophases for both the standard 
MODIS imagery and the modeled MODIS imagery in 2015. 
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Figure A10: Maps showing the date of the last three GCC phenophases for both the 
standard MODIS imagery and the modeled MODIS imagery in 2015. 
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Figure A11: Maps showing the date of the first four GCC phenophases for both the standard 
MODIS imagery and the modeled MODIS imagery in 2016. 
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Figure A12: Maps showing the date of the last three GCC phenophases for both the 
standard MODIS imagery and the modeled MODIS imagery in 2016. 
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Figure A13: Maps showing the date of the first four GCC phenophases for both the standard 
MODIS imagery and the modeled MODIS imagery in 2017. 
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Figure A14: Maps showing the date of the last three GCC phenophases for both the 
standard MODIS imagery and the modeled MODIS imagery in 2017. 
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Figure A15: Maps showing the date of the first four GCC phenophases for both the standard 
MODIS imagery and the modeled MODIS imagery in 2019. 
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Figure A16: Maps showing the date of the last three GCC phenophases for both the 
standard MODIS imagery and the modeled MODIS imagery in 2019. 
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Figure A17: Maps showing the date of the first four EVI2 phenophases for both the standard 
MODIS imagery and the modeled MODIS imagery in 2015. 
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Figure A18: Maps showing the date of the last three EVI2 phenophases for both the 
standard MODIS imagery and the modeled MODIS imagery in 2015. 
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Figure A19: Maps showing the date of the first four EVI2 phenophases for both the standard 
MODIS imagery and the modeled MODIS imagery in 2016. 
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Figure A20: Maps showing the date of the last three EVI2 phenophases for both the 
standard MODIS imagery and the modeled MODIS imagery in 2016. 
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Figure A21: Maps showing the date of the first four EVI2 phenophases for both the standard 
MODIS imagery and the modeled MODIS imagery in 2017. 
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Figure A22: Maps showing the date of the last three EVI2 phenophases for both the 
standard MODIS imagery and the modeled MODIS imagery in 2017. 
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Figure A23: Maps showing the date of the first four EVI2 phenophases for both the standard 
MODIS imagery and the modeled MODIS imagery in 2018. 
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Figure A24: Maps showing the date of the last three EVI2 phenophases for both the 
standard MODIS imagery and the modeled MODIS imagery in 2018. 
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Figure A25: Maps showing the date of the first four EVI2 phenophases for both the standard 
MODIS imagery and the modeled MODIS imagery in 2019. 
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Figure A26: Maps showing the date of the last three EVI2 phenophases for both the 
standard MODIS imagery and the modeled MODIS imagery in 2019. 
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Figure A27: Maps showing the date of the first four VCI phenophases for both the standard 
MODIS imagery and the modeled MODIS imagery in 2015. 
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Figure A28: Maps showing the date of the last three VCI phenophases for both the standard 
MODIS imagery and the modeled MODIS imagery in 2015. 
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Figure A29: Maps showing the date of the first four VCI phenophases for both the standard 
MODIS imagery and the modeled MODIS imagery in 2016. 
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Figure A30: Maps showing the date of the last three VCI phenophases for both the standard 
MODIS imagery and the modeled MODIS imagery in 2016. 
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Figure A31: Maps showing the date of the first four VCI  phenophases for both the standard 
MODIS imagery and the modeled MODIS imagery in 2017. 
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Figure A32: Maps showing the date of the last three VCI phenophases for both the standard 
MODIS imagery and the modeled MODIS imagery in 2017. 
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Figure A33: Maps showing the date of the first four VCI phenophases for both the standard 
MODIS imagery and the modeled MODIS imagery in 2018. 
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Figure A34: Maps showing the date of the last three VCI phenophases for both the standard 
MODIS imagery and the modeled MODIS imagery in 2018. 
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Figure A35: Maps showing the date of the first four VCI phenophases for both the standard 
MODIS imagery and the modeled MODIS imagery in 2019. 
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Figure A36: Maps showing the date of the last three VCI phenophases for both the standard 
MODIS imagery and the modeled MODIS imagery in 2019. 
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