4,400 research outputs found
Improving accuracy of total knee component cementation: description of a simple technique
<p>Abstract</p> <p>Background</p> <p>Total knee arthroplasty represents a common orthopedic surgical procedure. Achieving proper alignment of its components with the predrilled patellar and tibial peg holes prior to polymerization of the bone cement can be challenging.</p> <p>Technique</p> <p>After establishing the femoral, patellar and tibial bone cuts, the cancellous bone around the tibial keel, as well as the peg holes for the patella and femoral components are marked with methylene blue using a cotton swab stick. If bone cement is then placed onto the cut and marked bone edges, the methylene blue leaches through the bone cement and clearly outlines the tibial keel and predrilled femoral and patellar peg holes. This allows excellent visualization of the bone preparations for each component, ensuring safe and prompt positioning of TKA components while minimizing intraoperative difficulties with component alignment while the cement hardens.</p> <p>Conclusion</p> <p>The presented technical note helps to improve the accuracy and ease of insertion when the components of total knee arthroplasty are impacted to their final position.</p
Comparing Regularized Kelvinlet Functions and the Finite Element Method for Registration of Medical Images to Sparse Organ Data
Image-guided surgery collocates patient-specific data with the physical
environment to facilitate surgical decision making in real-time. Unfortunately,
these guidance systems commonly become compromised by intraoperative
soft-tissue deformations. Nonrigid image-to-physical registration methods have
been proposed to compensate for these deformations, but intraoperative clinical
utility requires compatibility of these techniques with data sparsity and
temporal constraints in the operating room. While linear elastic finite element
models are effective in sparse data scenarios, the computation time for finite
element simulation remains a limitation to widespread deployment. This paper
proposes a registration algorithm that uses regularized Kelvinlets, which are
analytical solutions to linear elasticity in an infinite domain, to overcome
these barriers. This algorithm is demonstrated and compared to finite
element-based registration on two datasets: a phantom dataset representing
liver deformations and an in vivo dataset representing breast deformations. The
regularized Kelvinlets algorithm resulted in a significant reduction in
computation time compared to the finite element method. Accuracy as evaluated
by target registration error was comparable between both methods. Average
target registration errors were 4.6 +/- 1.0 and 3.2 +/- 0.8 mm on the liver
dataset and 5.4 +/- 1.4 and 6.4 +/- 1.5 mm on the breast dataset for the
regularized Kelvinlets and finite element method models, respectively. This
work demonstrates the generalizability of using a regularized Kelvinlets
registration algorithm on multiple soft tissue elastic organs. This method may
improve and accelerate registration for image-guided surgery applications, and
it shows the potential of using regularized Kelvinlets solutions on medical
imaging data.Comment: 17 pages, 9 figure
Accelerator performance analysis of the Fermilab Muon Campus
Fermilab is dedicated to hosting world-class experiments in search of new
physics that will operate in the coming years. The Muon g-2 Experiment is one
such experiment that will determine with unprecedented precision the muon
anomalous magnetic moment, which offers an important test of the Standard
Model. We describe in this study the accelerator facility that will deliver a
muon beam to this experiment. We first present the lattice design that allows
for efficient capture, transport, and delivery of polarized muon beams. We then
numerically examine its performance by simulating pion production in the
target, muon collection by the downstream beam line optics, as well as
transport of muon polarization. We finally establish the conditions required
for the safe removal of unwanted secondary particles that minimizes
contamination of the final beam.Comment: 10 p
Identification of Disulfide Bond Formation between MitoNEET and Glutamate Dehydrogenase 1
MitoNEET is a protein that was identified as a drug target for diabetes, but its cellular function as well as its role in diabetes remains elusive. Protein pull-down experiments identified glutamate dehydrogenase 1 (GDH1) as a potential binding partner. GDH1 is a key metabolic enzyme with emerging roles in insulin regulation. MitoNEET forms a covalent complex with GDH1 through disulfide bond formation and acts as an activator. Proteomic analysis identified the specific cysteine residues that participate in the disulfide bond. This is the first report that effectively links mitoNEET to activation of the insulin regulator GDH1
Identification of Disulfide Bond Formation between MitoNEET and Glutamate Dehydrogenase 1
MitoNEET is a protein that was identified as a drug target for diabetes, but its cellular function as well as its role in diabetes remains elusive. Protein pull-down experiments identified glutamate dehydrogenase 1 (GDH1) as a potential binding partner. GDH1 is a key metabolic enzyme with emerging roles in insulin regulation. MitoNEET forms a covalent complex with GDH1 through disulfide bond formation and acts as an activator. Proteomic analysis identified the specific cysteine residues that participate in the disulfide bond. This is the first report that effectively links mitoNEET to activation of the insulin regulator GDH1
Hyporheic Exchange and Water Chemistry of Two Arctic Tundra Streams of Contrasting Geomorphology
The North Slope of Alaska’s Brooks Range is underlain by continuous permafrost, but an active layer of thawed sediments develops at the tundra surface and beneath streambeds during the summer, facilitating hyporheic exchange. Our goal was to understand how active layer extent and stream geomorphology influence hyporheic exchange and nutrient chemistry. We studied two arctic tundra streams of contrasting geomorphology: a high-gradient, alluvial stream with riffle-pool sequences and a low-gradient, peat-bottomed stream with large deep pools connected by deep runs. Hyporheic exchange occurred to ~50 cm beneath the alluvial streambed and to only ~15 cm beneath the peat streambed. The thaw bulb was deeper than the hyporheic exchange zone in both stream types. The hyporheic zone was a net source of ammonium and soluble reactive phosphorus in both stream types. The hyporheic zone was a net source of nitrate in the alluvial stream, but a net nitrate sink in the peat stream. The mass flux of nutrients regenerated from the hyporheic zones in these two streams was a small portion of the surface water mass flux. Although small, hyporheic sources of regenerated nutrients help maintain the in-stream nutrient balance. If future warming in the arctic increases the depth of the thaw bulb, it may not increase the vertical extent of hyporheic exchange. The greater impacts on annual contributions of hyporheic regeneration are likely to be due to longer thawed seasons, increased sediment temperatures or changes in geomorphology
Spacecraft System Design for an Advanced X-Ray Monitor (AXM) Mission
This paper describes a system concept for a NASA Small Explorer Mission to develop an all-skyviewing Advanced X-ray Monitor (AXM). The spacecraft is configured to be launched from a Pegasus XL vehicle. AXM is designed to provide unprecedented sensitivity to cosmic explosions seen in X-rays. These include the ejections of relativistic jets by black holes in the Galaxy, and the fireballs of gamma ray bursts that originate in distant Galaxies. Such events are captured with 31 cameras mounted on the AXM spacecraft to continuously view 97% of the celestial sphere, excluding occultations by the Earth. The camera detectors are Gas Electron Multiplier (GEM) devices, developed at CERN and used with coded masks for X-ray astronomy. The pointing orientations for the cameras presented a challenge to provide 4p steradian viewing, while accommodating spacecraft subsystems and deployable solar arrays for power. The mounting orientation resembles the 32 faces and vertices of a soccer ball, with one camera eliminated to avoid the saturating effect of solar X-rays. The objective of continuous, all-sky viewing is accomplished with a three-axis stabilized attitude control subsystem with the solar panels pointed close to the Sun. The AXM mission is designed for launch into a ~600-km altitude, circular, equatorial orbit. An approximately 1 degree spacecraft maneuver once per day will maintain the solar panels aligned with the Sun. The spacecraft is powered by solar arrays that deploy after launch and are then fixed for the mission duration. Within limitations, the AXM spacecraft has been designed to gracefully tolerate many kinds of anomalies
Manacled to Identity: Cosmopolitanism, Class, and ‘The Culture Concept’ in Stephen Crane
This article begins with a close reading of Stephen Crane’s short story ‘Manacled’ from 1900, which situates this rarely considered short work within the context of contemporary debates about realism. I then proceed to argue that many of the debates raised by the tale have an afterlife in our own era of American literary studies, which has frequently focused on questions of ‘identity’ and ‘culture’ in its reading of realism and naturalism to the exclusion of the importance of cosmopolitan discourses of diffusion and exchange across national borders. I then offer a brief reading of Crane’s novel George’s Mother, which follows Walter Benn Michaels in suggesting that the recent critical attention paid to particularities of cultural difference in American studies have come to conflate ideas of class and social position with ideas of culture in ways that have ultimately obscured the presence of genuine historical inequalities in US society. In order to challenge this critical commonplace, I situate Crane’s work within a history of transatlantic cosmopolitanism associated with the ideas of Franz Boas and Matthew Arnold to demonstrate the ways in which Crane’s narratives sought out an experience of the universal within their treatments of the particular
- …