42,020 research outputs found
Fish and freshwater crayfish in streams in the Cape Naturaliste region and Wilyabrup Brook
No abstract availabl
Influence of O2 and N2 on the conductivity of carbon nanotube networks
We have performed experiments on single-wall carbon nanotube (SWNT) networks
and compared with density-functional theory (DFT) calculations to identify the
microscopic origin of the observed sensitivity of the network conductivity to
physisorbed O2 and N2. Previous DFT calculations of the transmission function
for isolated pristine SWNTs have found physisorbed molecules have little
influence on their conductivity. However, by calculating the four-terminal
transmission function of crossed SWNT junctions, we show that physisorbed O2
and N2 do affect the junction's conductance. This may be understood as an
increase in tunneling probability due to hopping via molecular orbitals. We
find the effect is substantially larger for O2 than for N2, and for
semiconducting rather than metallic SWNTs junctions, in agreement with
experiment.Comment: 6 pages, 5 figures, 1 tabl
Theory of the cold collision frequency shift in 1S--2S spectroscopy of Bose-Einstein-condensed and non-condensed hydrogen
We show that a correct formulation of the cold collision frequency shift for
two photon spectroscopy of Bose-condensed and cold non-Bose-condensed hydrogen
is consistent with experimental data. Our treatment includes transport and
inhomogeneity into the theory of a non-condensed gas, which causes substantial
changes in the cold collision frequency shift for the ordinary thermal gas, as
a result of the very high frequency (3.9kHz) of transverse trap mode. For the
condensed gas, we find substantial corrections arise from the inclusion of
quasiparticles, whose number is very large because of the very low frequency
(10.2Hz) of the longitudinal trap mode. These two effects together account for
the apparent absence of a "factor of two" between the two possibilities.
Our treatment considers only the Doppler-free measurements, but could be
extended to Doppler-sensitive measurements. For Bose-condensed hydrogen, we
predict a characteristic "foot" extending into higher detunings than can arise
from the condensate alone, as a result of a correct treatment of the statistics
of thermal quasiparticles.Comment: 16 page J Phys B format plus 6 postscript figure
Microlensing of the Lensed Quasar SDSS0924+0219
We analyze V, I and H band HST images and two seasons of R-band monitoring
data for the gravitationally lensed quasar SDSS0924+0219. We clearly see that
image D is a point-source image of the quasar at the center of its host galaxy.
We can easily track the host galaxy of the quasar close to image D because
microlensing has provided a natural coronograph that suppresses the flux of the
quasar image by roughly an order of magnitude. We observe low amplitude,
uncorrelated variability between the four quasar images due to microlensing,
but no correlated variations that could be used to measure a time delay. Monte
Carlo models of the microlensing variability provide estimates of the mean
stellar mass in the lens galaxy (0.02 Msun < M < 1.0 Msun), the accretion disk
size (the disk temperature is 5 x 10^4 K at 3.0 x 10^14 cm < rs < 1.4 x 10^15
cm), and the black hole mass (2.0 x 10^7 Msun < MBH \eta_{0.1}^{-1/2}
(L/LE)^{1/2} < 3.3 x 10^8 Msun), all at 68% confidence. The black hole mass
estimate based on microlensing is consistent with an estimate of MBH = 7.3 +-
2.4 x 10^7 Msun from the MgII emission line width. If we extrapolate the
best-fitting light curve models into the future, we expect the the flux of
images A and B to remain relatively stable and images C and D to brighten. In
particular, we estimate that image D has a roughly 12% probability of
brightening by a factor of two during the next year and a 45% probability of
brightening by an order of magnitude over the next decade.Comment: v.2 incorporates referee's comments and corrects two errors in the
original manuscript. 28 pages, 10 figures, published in Ap
Rapid rotation of micron and submicron dielectric particles measured using optical tweezers
We demonstrate the use of a laser trap (‘optical tweezers’) and back-focal-plane position detector to measure rapid rotation in aqueous solution of single particles with sizes in the vicinity of 1 μm. Two types of rotation were measured: electrorotation of polystyrene microspheres and rotation of the flagellar motor of the bacterium Vibrio alginolyticus. In both cases, speeds in excess of 1000 Hz (rev s−1) were measured. Polystyrene beads of diameter about 1 μm labelled with smaller beads were held at the centre of a microelectrode array by the optical tweezers. Electrorotation of the labelled beads was induced by applying a rotating electric field to the solution using microelectrodes. Electrorotation spectra were obtained by varying the frequency of the applied field and analysed to obtain the surface conductance of the beads. Single cells of V. alginolyticus were trapped and rotation of the polar sodium-driven flagellar motor was measured. Cells rotated more rapidly in media containing higher concentrations of Na+, and photodamage caused by the trap was considerably less when the suspending medium did not contain oxygen. The technique allows single-speed measurements to be made in less than a second and separate particles can be measured at a rate of several per minute
On the structure of the scalar mesons and
We investigate the structure of the scalar mesons and
within realistic meson-exchange models of the and
interactions. Starting from a modified version of the J\"ulich model for
scattering we perform an analysis of the pole structure of the
resulting scattering amplitude and find, in contrast to existing models, a
somewhat large mass for the ( MeV,
MeV). It is shown that our model provides a description of
data comparable in quality with those of
alternative models. Furthermore, the formalism developed for the
system is consistently extended to the interaction leading to a
description of the as a dynamically generated threshold effect
(which is therefore neither a conventional state nor a
bound state). Exploring the corresponding pole position the
is found to be rather broad ( MeV,
MeV). The experimentally observed smaller width results from the influence of
the nearby threshold on this pole.Comment: 25 pages, 15 Postscript figure
Radioisotope thermal photovoltaic application of the GaSb solar cell
An examination of a RTVP (radioisotopic thermophotovoltaic) conceptual design has shown a high potential for power densities well above those achievable with radioisotopic thermoelectric generator (RTG) systems. An efficiency of 14.4 percent and system specific power of 9.25 watts/kg were predicted for a system with sixteen GPHS (general purpose heat source) sources operating at 1100 C. The models also showed a 500 watt system power by the strontium-90 isotope at 1200 C at an efficiency of 17.0 percent and a system specific power of 11.8 watts/kg. The key to this level of performance is a high-quality photovoltaic cell with narrow bandgap and a reflective rear contact. Recent work at Boeing on GaSb cells and transparent back GaAs cells indicate that such a cell is well within reach
- …