450 research outputs found
Localized quasiholes and the Majorana fermion in fractional quantum Hall state at nu=5/2 via direct diagonalization
Using exact diagonalization in the spherical geometry, we investigate systems
of localized quasiholes at nu=5/2 for interactions interpolating between the
pure Coulomb and the three-body interaction for which the Moore-Read state is
the exact ground state. We show that the charge e/4 quasihole can be easily
localized by means of a delta-function pinning potential. Using a tuned smooth
pinning potential, the quasihole radius can be limited to approximately three
magnetic length units. For systems of two quasiholes, adiabatic continuity
between the Moore-Read and the Coulomb limit holds for the ground state, while
for four quasiholes, the lowest two energy states exhibit adiabatic continuity.
This implies the existence of a Majorana fermion for pure Coulomb interaction.
We also present preliminary results in the Coulomb limit for braiding in
systems containing four quasiholes, with up to 14 electrons, diagonalizing in
the full spin-polarized sector of the second Landau-level Hilbert space.Comment: 9 pages, 8 figure
Excitation gaps in fractional quantum Hall states: An exact diagonalization study
We compute energy gaps for spin-polarized fractional quantum Hall states in
the lowest Landau level at filling fractions nu=1/3, 2/5,3/7 and 4/9 using
exact diagonalization of systems with up to 16 particles and extrapolation to
the infinite system-size limit. The gaps calculated for a pure Coulomb
interaction and ignoring finite width effects, disorder and LL mixing agree
with predictions of composite fermion theory provided the logarithmic
corrections to the effective mass are included. This is in contrast with
previous estimates, which, as we show, overestimated the gaps at nu=2/5 and 3/7
by around 15%. We also study the reduction of the gaps as a result of the
non-zero width of the 2D layer. We show that these effects are accurately
accounted for using either Gaussian or z*Gaussian' (zG) trial wavefunctions,
which we show are significantly better variational wavefunctions than the
Fang-Howard wavefunction. For quantum well parameters typical of
heterostructure samples, we find gap reductions of around 20%. The experimental
gaps, after accounting heuristically for disorder,are still around 40% smaller
than the computed gaps. However, for the case of tetracene layers
inmetal-insulator-semiconductor (MIS) devices we find that the measured
activation gaps are close to those we compute. We discuss possible reasons why
the difference between computed and measured activation gaps is larger in GaAs
heterostructures than in MIS devices. Finally, we present new calculations
using systems with up to 18 electrons of the gap at nu=5/2 including width
corrections.Comment: 18 pages, 17 figure
Stability and effective masses of composite-fermions in the first and second Landau Level
We propose a measure of the stability of composite fermions (CF's) at
even-denominator Landau-level filling fractions. Assuming Landau-level mixing
effects are not strong, we show that the CF liquid at in the
Landau level cannot exist and relate this to the absence of a hierarchy of
incompressible states for filling fractions . We find that
a polarized CF liquid should exist at . We also show that, for CF
states, the variation with system size of the ground state energy of
interacting electrons follows that for non-interacting particles in zero
magnetic field. We use this to estimate the CF effective masses.Comment: 9 pages, Revtex, PSIZ-TP-940
Microscopic non-equilibrium theory of quantum well solar cells
We present a microscopic theory of bipolar quantum well structures in the
photovoltaic regime, based on the non-equilibrium Green's function formalism
for a multi band tight binding Hamiltonian. The quantum kinetic equations for
the single particle Green's functions of electrons and holes are
self-consistently coupled to Poisson's equation, including inter-carrier
scattering on the Hartree level. Relaxation and broadening mechanisms are
considered by the inclusion of acoustic and optical electron-phonon interaction
in a self consistent Born approximation of the scattering self energies.
Photogeneration of carriers is described on the same level in terms of a self
energy derived from the standard dipole approximation of the electron-photon
interaction. Results from a simple two band model are shown for the local
density of states, spectral response, current spectrum, and current-voltage
characteristics for generic single quantum well systems.Comment: 10 pages, 6 figures; corrected typos, changed caption Fig. 1,
replaced Fig.
Transition from quantum Hall to compressible states in the second Landau level: new light on the =5/2 enigma
Quantum Hall states at filling fraction =5/2 are examined by numerical
diagonalization. Spin-polarized and -unpolarized states of systems with electrons are studied, neglecting effects of Landau level mixing. We find
that the ground state is spin polarized. It is incompressible and has a large
overlap with paired states like the Pfaffian. For a given sample, the energy
gap is about 11 times smaller than at =1/3. Evidence is presented of phase
transitions to compressible states, driven by the interaction strength at short
distance. A reinterpretation of experiments is suggested.Comment: This paper has already appeared in PRL, but has not been on the we
Composite Fermions in Negative Effective Magnetic Field: A Monte-Carlo Study
The method of Jain and Kamilla [PRB {\bf 55}, R4895 (1997)] allows numerical
generation of composite fermion trial wavefunctions for large numbers of
electrons in high magnetic fields at filling fractions of the form nu=p/(2mp+1)
with m and p positive integers. In the current paper we generalize this method
to the case where the composite fermions are in an effective (mean) field with
opposite sign from the actual physical field, i.e. when p is negative. We
examine both the ground state energies and the low energy neutral excitation
spectra of these states. Using particle-hole symmetry we can confirm the
correctness of our method by comparing results for the series m=1 with p>0
(previously calculated by others) to our results for the conjugate series m=1
with p <0. Finally, we present similar results for ground state energies and
low energy neutral excitations for the states with m=2 and p <0 which were not
previously addressable, comparing our results to the m=1 case and the p > 0,
m=2 cases.Comment: 11 page
Skyrme Crystal In A Two-Dimensional Electron Gas
The ground state of a two-dimensional electron gas at Landau level filling
factors near is a Skyrme crystal with long range order in the
positions and orientations of the topologically and electrically charged
elementary excitations of the ferromagnetic ground state. The lowest
energy Skyrme crystal is a square lattice with opposing postures for
topological excitations on opposite sublattices. The filling factor dependence
of the electron spin-polarization, calculated for the square lattice Skyrme
crystal, is in excellent agreement with recent experiments.Comment: 3 pages, latex, 3 figures available upon request from
[email protected]
Interface steps in field effect devices
The charge doped into a semiconductor in a field effect transistor (FET) is
generally confined to the interface of the semiconductor. A planar step at the
interface causes a potential drop due to the strong electric field of the FET,
which in turn is screened by the doped carriers. We analyze the dipolar
electronic structure of a single step in the Thomas-Fermi approximation and
find that the transmission coefficient through the step is exponentially
suppressed by the electric field and the induced carrier density as well as by
the step height. In addition, the field enhancement at the step edge can
facilitate the electric breakthrough of the insulating layer. We suggest that
these two effects may lead to severe problems when engineering FET devices with
very high doping. On the other hand steps can give rise to interesting physics
in superconducting FETs by forming weak links and potentially creating atomic
size Josephson junctions.Comment: 6 pages, 4 figures, submitted to J. Appl. Phy
- …