10 research outputs found

    Developmental validation of Oxford Nanopore Technology MinION sequence data and the NGSpeciesID bioinformatic pipeline for forensic genetic species identification

    Get PDF
    Species identification of non-human biological evidence through DNA nucleotide sequencing is routinely used for forensic genetic analysis to support law enforcement. The gold standard for forensic genetics is conventional Sanger sequencing; however, this is gradually being replaced by high-throughput sequencing (HTS) approaches which can generate millions of individual reads in a single experiment. HTS sequencing, which now dominates molecular biology research, has already been demonstrated for use in a number of forensic genetic analysis applications, including species identification. However, the generation of HTS data to date requires expensive equipment and is cost-effective only when large numbers of samples are analysed simultaneously. The Oxford Nanopore Technologies (ONT) MinIONℱ is an affordable and small footprint DNA sequencing device with the potential to quickly deliver reliable and cost effective data. However, there has been no formal validation of forensic species identification using high-throughput (deep read) sequence data from the MinION making it currently impractical for many wildlife forensic end-users. Here, we present a MinION deep read sequence data validation study for species identification. First, we tested whether the clustering-based bioinformatics pipeline NGSpeciesID can be used to generate an accurate consensus sequence for species identification. Second, we systematically evaluated the read variation distribution around the generated consensus sequences to understand what confidence we have in the accuracy of the resulting consensus sequence and to determine how to interpret individual sample results. Finally, we investigated the impact of differences between the MinION consensus and Sanger control sequences on correct species identification to understand the ability and accuracy of the MinION consensus sequence to differentiate the true species from the next most similar species. This validation study establishes that ONT MinION sequence data used in conjunction with the NGSpeciesID pipeline can produce consensus DNA sequences of sufficient accuracy for forensic genetic species identification

    STRoe deer: a validated forensic STR profiling system for the European roe deer (Capreolus capreolus)

    Get PDF
    European roe deer (Capreolus capreolus L.) are the most common game species in Europe, hunted for meat and trophies. Forensic investigations involving roe deer poaching may often benefit from an individual identification method to link a suspect to a specific incident. The current paper presents a forensically validated DNA profiling system for European roe deer called “STRoe deer”. This DNA profiling system consists of 12 novel unlinked tetra-nucleotide short tandem repeat (STR) loci and two sexing markers, with an allelic ladder to facilitate accurate genotyping. Validation results using 513 European roe deer samples collected from a single population from the Swiss Plateau demonstrated successful amplification of all 14 loci with as little as 0.05 ng of European roe deer DNA. Species-specificity tests showed that other members of the Cervidae family exhibited partial profiles and non-specific peaks, whereas most members of the Bovidae family showed just non-specific cross-species amplification products. Three different methods to calculate match probabilities for randomly sampled European roe deer genotypes resulted in median match probabilities ranging from 1.4 × 10−13 to 2.5 × 10−5. These methods accounted for possible population structure, occurrence of null alleles and individual relatedness. Based on these results, we conclude that STRoe deer is a robust genotyping system that should prove a valuable tool for individual identification and sexing of European roe deer to support criminal investigations

    Phylogeography and population genetic structure of the European roe deer in Switzerland following recent recolonization

    Get PDF
    In the early 1800s, the European roe deer (Capreolus capreolus) was probably extirpated from Switzerland, due to overhunting and deforestation. After a federal law was enacted in 1875 to protect lactating females and young, and limiting the hunting season, the roe deer successfully recovered and recolonized Switzerland. In this study, we use mitochondrial DNA and nuclear DNA markers to investigate the recolonization and assess contemporary genetic structure in relation to broad topographic features, in order to understand underlying ecological processes, inform future roe deer management strategies, and explore the opportunity for development of forensic traceability tools. The results concerning the recolonization origin support natural, multidirectional immigration from neighboring countries. We further demonstrate that there is evidence of weak genetic differentiation within Switzerland among topographic regions. Finally, we conclude that the genetic data support the recognition of a single roe deer management unit within Switzerland, within which there is a potential for broad‐scale geographic origin assignment using nuclear markers to support law enforcement

    Phylogeography and population genetic structure of the European roe deer in Switzerland following recent recolonization

    Full text link
    n the early 1800s, the European roe deer (Capreolus capreolus) was probably extirpated from Switzerland, due to overhunting and deforestation. After a federal law was en-acted in 1875 to protect lactating females and young, and limiting the hunting season, the roe deer successfully recovered and recolonized Switzerland. In this study, we use mitochondrial DNA and nuclear DNA markers to investigate the recolonization and as-sess contemporary genetic structure in relation to broad topographic features, in order to understand underlying ecological processes, inform future roe deer management strategies, and explore the opportunity for development of forensic traceability tools. The results concerning the recolonization origin support natural, multidirectional immi-gration from neighboring countries. We further demonstrate that there is evidence of weak genetic differentiation within Switzerland among topographic regions. Finally, we conclude that the genetic data support the recognition of a single roe deer management unit within Switzerland, within which there is a potential for broad- scale geographic origin assignment using nuclear markers to support law enforcement

    The use of immunochromatographic rapid test for soft tissue remains identification in order to distinguish between human and non-human origin

    Full text link
    Clear identification of soft tissue remains as being of non-human origin may be visually difficult in some cases e.g. due to decomposition. Thus, an additional examination is required. The use of an immunochromatographic rapid tests (IRT) device can be an easy solution with the additional advantage to be used directly at the site of discovery. The use of these test devices for detecting human blood at crime scenes is a common method. However, the IRT is specific not only for blood but also for differentiation between human and non-human soft tissue remains. In the following this method is discussed and validated by means of two forensic cases and several samples of various animals

    DNA fingerprinting: an effective tool for taxonomic identification of precious corals in jewelry

    Get PDF
    Precious coral species have been used to produce jewelry and ornaments since antiquity. Due to the high value and demand for corals, some coral beds have been heavily fished over past centuries. Fishing and international trade regulations were put in place to regulate fishing practices in recent decades. To this date, the control of precious coral exploitation and enforcement of trade rules have been somewhat impaired by the fact that different species of worked coral samples can be extremely difficult to distinguish, even for trained experts. Here, we developed methods to use DNA recovered from precious coral samples worked for jewelry to identify their species. We evaluated purity and quantity of DNA extracted using five different techniques. Then, a minimally invasive sampling protocol was tested, which allowed genetic analysis without compromising the value of the worked coral objects.The best performing DNA extraction technique applies decalcification of the skeletal material with EDTA in the presence of laurylsarcosyl and proteinase, and purification of the DNA with a commercial silica membrane. This method yielded pure DNA in all cases using 100 mg coral material and in over half of the cases when using “quasi non-destructive” sampling with sampled material amounts as low as 2.3 mg. Sequence data of the recovered DNA gave an indication that the range of precious coral species present in the trade is broader than previously anticipated

    Dispersal patterns of orang-utans (Pongo spp.) in a Bornean peat-swamp forest

    Full text link
    Knowledge regarding dispersal patterns in great apes may help in understanding the evolution of dispersal patterns and social grouping in early hominoids, as well as in our own species. However, the social structure and dispersal system of orang-utans (Pongo spp.) remains little understood despite past research. We addressed this question by conducting genetic analyses on a wild orang-utan (Pongo pygmaeus wurmbii) population from the Sabangau peat-swamp in Borneo. We estimated pairwise relatedness among 16 adult individuals using 19 polymorphic microsatellite markers. Mean relatedness among females was significantly higher than in males, irrespective of the relatedness estimator used, following the pattern predicted for male dispersal. Our results support field observations that average dispersal distance for females is less than for males, suggesting that female orangutans are philopatric, whereas males disperse. This contrasts with previous findings from other sites where anthropogenic influences were present. Based on qualitative mitochondrial DNA analyses, it appears that unflanged adult males show some degree of site fidelity compared to flanged males. Thus, male orang-utans may disperse permanently from their natal range once they are fully flanged. Male-biased dispersal and female philopatry in orang-utans differ from those of extant African apes and are more similar to many Old World monkey species. Hence we hypothesize that this system may represent the ancestral state of early hominoids

    A case study of ivory species identification using a combination of morphological, gemmological and genetic methods

    Full text link
    Twenty-one items sold as mammoth ivory in China were submitted to the Zurich Institute of Forensic Medicine (University of Zurich, Switzerland) and SSEF for testing. The aim of this case study was to identify these samples using macroscopic morphological diagnostics, micro-scopic examination, FTIR spectroscopy, trace-element analysis and additional minimally destructive DNA analysis (of approximately 100 mg of powder) of a region of the cytochrome b gene to assign taxonomic identification. Morphological features (Schreger angles) shown by five of the samples were characteristic of extinct Proboscideans (mammoths), and one other specimen displayed unnatural layering that identified it as an ivory imitation. FTIR spectroscopy further showed the imitation was an artificial resin, while infrared spectra of the other samples displayed overlapping features characteristic of carbonated hydroxyapatite (i.e. ivory or bone). Like FTIR spectroscopy, trace-element chemistry cannot be used to separate species. DNA analysis could in some cases differentiate extinct (mammoth) from extant (African and Asian elephant) Proboscidean species, and also identi-fied one specimen as cattle bone. Combining morphological, gemmological and genetic approaches can increase the amount of evidence available to identify the species origin of ivory

    Coral-ID: A forensically validated genetic test to identify precious coral material and its application to objects seized from illegal traffic

    Get PDF
    The production and trade of objects manufactured from the skeletal axis of coralid precious corals is a historically, culturally and economically important global industry. Coralids are members of the diverse Coralliidae family, which contains several species complexes and morphospecies. For most precious coral found in the jewelry trade, the color remains the sole clue and link to the taxonomic identity of the individual. Different coralid species have however similar or overlapping colors resulting in difficulty to taxonomically identify jewelry objects, including four species listed by the Convention on the International Trade of Endangered Species (CITES) whose international transport and trade requires species-specific and country of origin documentation. We aimed at developing a reliable method to taxonomically identify coralid material with the objective of distinguishing CITES protected species from their non-protected counterparts. We present Coral-ID, a genetic assay to taxonomically classify coralid objects using quasi non-destructive sampling. The assay classifies the analyzed sample in one of six taxonomic categories and performs at least presumptive separation of CITES-listed and non-listed species in all cases. Developmental validation experiments prove that Coral-ID is a specific, accurate and very sensitive method. As the first attempt to randomly sample corals in the trade to identify them, we applied Coral-ID on 20 precious coral objects seized by custom authorities upon import to in Switzerland. Thirteen (65%) of these samples could be analyzed; three of these were found to be presumptively CITES-listed, and 10 of them have proven to originate from non-CITES-listed species
    corecore