1,045 research outputs found

    Conceptual Design of Digital Twin for Bio-Methanol Production from Microalgae

    Get PDF
    In the last decades, microalgae have gained a lot of interest in the energy and chemical industry thanks to their higher biofuel productivity potential rather than other land plants. To better exploit their green nature and renewable power, anaerobic digestion (AD) fits perfectly for the scope. AD is a metabolic process that generates a methane-rich gas, the biogas, which can then be used for clean electricity and chemicals production. High interest has arisen in the field of AD in industrial practice, and a lot of experiments were done to produce biogas from different types of feedstocks. In this manner, microalgae represent a promising opportunity to produce biogas from renewable and self-sustainable organisms. Biogas is mostly used to produce electrical energy and heat through cogeneration cycles or is upgraded to biomethane through the removal of CO2 and impurities, reaching a CH4 purity above 95-97% vol. On the other hand, an interesting perspective of biogas exploitation is its conversion in biofuels such as methanol or dimethyl-ether. This new concept of bio-refining lays the ground for two aspects: The economical valorisation of the biomass with a more valuable product as bio-methanol and the conversion of biogas to biofuel to fix part of the carbon in a chemical molecule, avoiding the re-emission in the atmosphere of CO2. The scope of this work is to present and technically analyse a conceptual design of a circular bio-refinery based on microalgae biomass feedstock with the final output of methanol production. Biogas production from microalgae is modelled with PythonTM (v3.9) while process simulations are computed using state of the art industrial simulation packages like Aspen HYSISÂź v11. Interesting factors to analyse are carbon emission, the field of use for functional production, the global process yield and preliminary feasibility analysis

    Microenvironment in neuroblastoma: Isolation and characterization of tumor-derived mesenchymal stromal cells

    Get PDF
    Background: It has been proposed that mesenchymal stromal cells (MSCs) promote tumor progression by interacting with tumor cells and other stroma cells in the complex network of the tumor microenvironment. We characterized MSCs isolated and expanded from tumor tissues of pediatric patients diagnosed with neuroblastomas (NB-MSCs) to define interactions with the tumor microenvironment. Methods: Specimens were obtained from 7 pediatric patients diagnosed with neuroblastoma (NB). Morphology, immunophenotype, differentiation capacity, proliferative growth, expression of stemness and neural differentiation markers were evaluated. Moreover, the ability of cells to modulate the immune response, i.e. inhibition of phytohemagglutinin (PHA) activated peripheral blood mononuclear cells (PBMCs) and natural killer (NK) cytotoxic function, was examined. Gene expression profiles, known to be related to tumor cell stemness, Wnt pathway activation, epithelial-mesenchymal transition (EMT) and tumor metastasis were also evaluated. Healthy donor bone marrow-derived MSCs (BM-MSC) were employed as controls. Results: NB-MSCs presented the typical MSC morphology and phenotype. They showed a proliferative capacity superimposable to BM-MSCs. Stemness marker expression (Sox2, Nanog, Oct3/4) was comparable to BM-MSCs. NB-MSC in vitro osteogenic and chondrogenic differentiation was similar to BM-MSCs, but NB-MSCs lacked adipogenic differentiation capacity. NB-MSCs reached senescence phases at a median passage of P7 (range, P5-P13). NB-MSCs exhibited greater immunosuppressive capacity on activated T lymphocytes at a 1:2 (MSC: PBMC) ratio compared with BM-MSCs (p = 0.018). NK cytotoxic activity was not influenced by co-culture, either with BM-MSCs or NB-MSCs. Flow-cytometry cell cycle analysis showed that NB-MSCs had an increased number of cells in the G0-G1 phase compared to BM-MSCs. Transcriptomic profiling results indicated that NB-MSCs were enriched with EMT genes compared to BM-MSCs. Conclusions: We characterized the biological features, the immunomodulatory capacity and the gene expression profile of NB-MSCs. The NB-MSC gene expression profile and their functional properties suggest a potential role in promoting tumor escape, invasiveness and metastatic traits of NB cancer cells. A better understanding of the complex mechanisms underlying the interactions between NB cells and NB-derived MSCs should shed new light on potential novel therapeutic approaches

    Porous silicon-based aptasensors: The next generation of label-free devices for health monitoring

    Get PDF
    Aptamers are artificial nucleic acid ligands identified and obtained from combinatorial libraries of synthetic nucleic acids through the in vitro process SELEX (systematic evolution of ligands by exponential enrichment). Aptamers are able to bind an ample range of non-nucleic acid targets with great specificity and affinity. Devices based on aptamers as bio-recognition elements open up a new generation of biosensors called aptasensors. This review focuses on some recent achievements in the design of advanced label-free optical aptasensors using porous silicon (PSi) as a transducer surface for the detection of pathogenic microorganisms and diagnostic molecules with high sensitivity, reliability and low limit of detection (LoD)

    Killer Ig-like receptors (kirs). their role in nk cell modulation and developments leading to their clinical exploitation

    Get PDF
    Natural killer (NK) cells contribute to the first line of defense against viruses and to the control of tumor growth and metastasis spread. The discovery of HLA class I specific inhibitory receptors, primarily of killer Ig-like receptors (KIRs), and of activating receptors has been fundamental to unravel NK cell function and the molecular mechanisms of tumor cell killing. Stemmed from the seminal discoveries in early ‘90s, in which Alessandro Moretta was the major actor, an extraordinary amount of research on KIR specificity, genetics, polymorphism, and repertoire has followed. These basic notions on NK cells and their receptors have been successfully translated to clinical applications, primarily to the haploidentical hematopoietic stem cell transplantation to cure otherwise fatal leukemia in patients with no HLA compatible donors. The finding that NK cells may express the PD-1 inhibitory checkpoint, particularly in cancer patients, may allow understanding how anti-PD-1 therapy could function also in case of HLA class Ineg tumors, usually susceptible to NK-mediated killing. This, together with the synergy of therapeutic anti-checkpoint monoclonal antibodies, including those directed against NKG2A or KIRs, emerging in recent or ongoing studies, opened new solid perspectives in cancer therapy

    Exploiting Human NK Cells in Tumor Therapy

    Get PDF
    NK cells play an important role in the innate defenses against tumor growth and metastases. Human NK cell activation and function are regulated by an array of HLA class I-specific inhibitory receptors and activating receptors recognizing ligands expressed de novo on tumor or virus-infected cells. NK cells have been exploited in immunotherapy of cancer, including: (1) the in vivo infusion of IL-2 or IL-15, cytokines inducing activation and proliferation of NK cells that are frequently impaired in cancer patients. Nonetheless, the significant toxicity experienced, primarily with IL-2, limited their use except for combination therapies, e.g., IL-15 with checkpoint inhibitors; (2) the adoptive immunotherapy with cytokine-induced NK cells had effect on some melanoma metastases (lung), while other localizations were not affected; (3) a remarkable evolution of adoptive cell therapy is represented by NK cells engineered with CAR-targeting tumor antigens (CAR-NK). CAR-NK cells complement CAR-T cells as they do not cause GvHD and may be obtained from unrelated donors. Accordingly, CAR-NK cells may represent an \u201coff-the-shelf\u201d tool, readily available for effective tumor therapy; (4) the efficacy of adoptive cell therapy in cancer is also witnessed by the \u3b1\u3b2T cell- and B cell-depleted haploidentical HSC transplantation in which the infusion of donor NK cells and \u3b3\u3b4T cells, together with HSC, sharply reduces leukemia relapses and infections; (5) a true revolution in tumor therapy is the use of mAbs targeting checkpoint inhibitors including PD-1, CTLA-4, the HLA class I-specific KIR, and NKG2A. Since PD-1 is expressed not only by tumor-associated T cells but also by NK cells, its blocking might unleash NK cells playing a crucial effector role against HLA class I-deficient tumors that are undetectable by T cells

    Impact of endometrial carcinoma histotype on the prognostic value of the TCGA molecular subgroups

    Get PDF
    Background: The Cancer Genome Atlas (TCGA) identified four prognostic subgroups of endometrial carcinoma: copy-number-low/p53-wild-type (p53wt), POLE-mutated/ultramutated (POLEmt), microsatellite-instability/hypermutated (MSI), and copy-number-high/p53-mutated (p53mt). However, it is still unclear if they may be integrated with the current histopathological prognostic factors, such as histotype. Objective: To assess the impact of histotype on the prognostic value of the TCGA molecular subgroups of endometrial carcinoma. Methods: A systematic review and meta-analysis was performed by searching 7 electronic databases from their inception to April 2019 for studies assessing prognosis in all TCGA subgroups of endometrial carcinoma. Pooled hazard ratio (HR) for overall survival (OS) was calculated in two different groups (“all-histotypes” and “endometrioid”), using p53wt subgroup as reference standard; HR for non-endometrioid histotypes was calculated indirectly. Disease-specific survival and progression-free survival were assessed as additional analyses. Results: Six studies with 2818 patients were included. In the p53mt subgroup, pooled HRs for OS were 4.322 (all-histotypes), 2.505 (endometrioid), and 4.937 (non-endometrioid). In the MSI subgroup, pooled HRs were 1.965 (all-histotypes), 1.287 (endometrioid), and 6.361 (non-endometrioid). In the POLEmt subgroup, pooled HRs were 0.763 (all-histotypes), 0.481 (endometrioid), and 2.634 (non-endometrioid). Results of additional analyses were consistent for all subgroups except for non-endometrioid POLEmt carcinomas. Conclusion: Histotype of endometrial carcinoma shows a crucial prognostic value independently of the TCGA molecular subgroup, with non-endometrioid carcinomas having a worse prognosis in each TCGA subgroup. Histotype should be integrated with molecular characterization for the risk stratification of patients in the future
    • 

    corecore