16 research outputs found

    High-throughput gene discovery in the rat

    Get PDF
    The rat is an important animal model for human diseases and is widely used in physiology. In this article we present a new strategy for gene discovery based on the production of ESTs from serially subtracted and normalized cDNA libraries, and we describe its application for the development of a comprehensive nonredundant collection of rat ESTs. Our new strategy appears to yield substantially more EST clusters per ESTs sequenced than do previous approaches that did not use serial subtraction. However, multiple rounds of library subtraction resulted in high frequencies of otherwise rare internally primed cDNAs, defining the limits of this powerful approach. To date, we have generated >200,000 3′ ESTs from >100 cDNA libraries representing a wide range of tissues and developmental stages of the laboratory rat. Most importantly, we have contributed to ∼50,000 rat UniGene clusters. We have identified, arrayed, and derived 5′ ESTs from >30,000 unique rat cDNA clones. Complete information, including radiation hybrid mapping data, is also maintained locally at http://genome.uiowa.edu/clcg.html. All of the sequences described in this article have been submitted to the dbEST division of the NCBI

    Das cervicothorakale Ganglioneurinom - eine chirurgische Herausforderung (Kasuistik)

    No full text

    Operationsstrategien bei thorakalen neurogenen Tumoren

    No full text

    Der Pneumothorax - Erstsymptom eines malignen Pleuramesothelioms

    No full text

    Sugar Conversion Induced by the Application of Heat to Grape Must

    No full text
    Two lots of the grape Trebbiano cultivar were harvested from the same vineyard 15 days apart, and their musts were cooked in an open stainless steel pan directly heated by fire; the kinetics of formation or disappearance of key constituents was then monitored for at least 16 h. From an engineering standpoint, the vessel behaved like a nonisothermal batch reactor in which the volume of the grape must necessarily decreased while its composition changed profoundly as a result of chemical reactions. Brix, total titratable acids, acetic acid, malic acid, lactic acid (D and L), pH, water activity, 5-HMF, and phenolic and radicalscavenging compounds were proposed as markers of the extent of cooking for which water vaporization and sugar degradation were identified as the two main driving factors. Acid-catalyzed dehydration was hypothesized as the predominant mechanism for sugar degradation, assuming a direct role of water vaporization; however, contributions of Maillard degradation pathways and other parallel reversible reactions were also hypothesized. Fractional conversion of 5-HMF and radical-scavenging compounds were proposed as quantitative markers for the extent of sugar degradation at, respectively, the early and advanced stages of cooking. Selectivity indices were also proposed as a performance criterion to design cooking processes in relation to sugar degradation
    corecore