775 research outputs found

    Superconducting Puddles and "Colossal'' Effects in Underdoped Cuprates

    Full text link
    Phenomenological models for the antiferromagnetic (AF) vs. d-wave superconductivity competition in cuprates are studied using conventional Monte Carlo techniques. The analysis suggests that cuprates may show a variety of different behaviors in the very underdoped regime: local coexistence or first-order transitions among the competing orders, stripes, or glassy states with nanoscale superconducting (SC) puddles. The transition from AF to SC does not seem universal. In particular, the glassy state leads to the possibility of "colossal'' effects in some cuprates, analog of those in manganites. Under suitable conditions, non-superconducting Cu-oxides could rapidly become superconducting by the influence of weak perturbations that align the randomly oriented phases of the SC puddles in the mixed state. Consequences of these ideas for thin-film and photoemission experiments are discussed.Comment: RevTeX 4, revised expanded version, 8 pages, 8 figure

    Critical behavior of the S=3/2 antiferromagnetic Heisenberg chain

    Full text link
    Using the density-matrix renormalization-group technique we study the long-wavelength properties of the spin S=3/2 nearest-neighbor Heisenberg chain. We obtain an accurate value for the spin velocity v=3.8+- 0.02, in agreement with experiment. Our results show conclusively that the model belongs to the same universality class as the S=1/2 Heisenberg chain, with a conformal central charge c=1 and critical exponent eta=1Comment: RevTeX (version 3.0), 4 twocolumn pages with 4 embedded figure

    Coexistence of Pairing Tendencies and Ferromagnetism in a Doped Two-Orbital Hubbard Model on Two-Leg Ladders

    Full text link
    Using the Density Matrix Renormalization Group and two-leg ladders, we investigate an electronic two-orbital Hubbard model including plaquette diagonal hopping amplitudes. Our goal is to search for regimes where charges added to the undoped state form pairs, presumably a precursor of a superconducting state.For the electronic density ρ=2\rho=2, i.e. the undoped limit, our investigations show a robust (π,0)(\pi,0) antiferromagnetic ground state, as in previous investigations. Doping away from ρ=2\rho=2 and for large values of the Hund coupling JJ, a ferromagnetic region is found to be stable. Moreover, when the interorbital on-site Hubbard repulsion is smaller than the Hund coupling, i.e. for U<JU'<J in the standard notation of multiorbital Hubbard models, our results indicate the coexistence of pairing tendencies and ferromagnetism close to ρ=2\rho=2. These results are compatible with previous investigations using one dimensional systems. Although further research is needed to clarify if the range of couplings used here is of relevance for real materials, such as superconducting heavy fermions or pnictides, our theoretical results address a possible mechanism for pairing that may be active in the presence of short-range ferromagnetic fluctuations.Comment: 8 pages, 4 Fig

    Large-Scale Monte Carlo Study of a Realistic Lattice Model for Ga_(1-x)Mn_xAs

    Full text link
    The properties of Mn-doped GaAs are studied at several doping levels and hole compensations, using a real-space Hamiltonian on an fcc lattice that reproduces the valence bands of undoped GaAs. Large-scale Monte Carlo (MC) simulations on a Cray XT3 supercomputer, using up to a thousand nodes, were needed to make this effort possible. Our analysis considers both the spin-orbit interaction and the random distribution of the Mn ions. The hopping amplitudes are functions of the GaAs Luttinger parameters. At the coupling J~1.2eV deduced from photoemission experiments, the MC Curie temperature and the shape of the magnetization curves are in agreement with experimental results for annealed samples. Although there are sizable differences with mean-field predictions, the system is found to be closer to a hole-fluid regime than to localized carriers

    Transport properties of strongly correlated electrons in quantum dots using a simple circuit model

    Full text link
    Numerical calculations are shown to reproduce the main results of recent experiments involving nonlocal spin control in nanostructures (N. J. Craig et al., Science 304, 565 (2004)). In particular, the splitting of the zero-bias-peak discovered experimentally is clearly observed in our studies. To understand these results, a simple "circuit model" is introduced and shown to provide a good qualitative description of the experiments. The main idea is that the splitting originates in a Fano anti-resonance, which is caused by having one quantum dot side-connected in relation to the current's path. This scenario provides an explanation of Craig et al.'s results that is alternative to the RKKY proposal, which is here also addressed.Comment: 5 pages, 5 figure

    Unexpected Conductance Dip in the Kondo Regime of Linear Arrays of Quantum Dots

    Full text link
    Using exact-diagonalization of small clusters and Dyson equation embedding techniques, the conductance GG of linear arrays of quantum dots is investigated. The Hubbard interaction induces Kondo peaks at low temperatures for an odd number of dots. Remarkably, the Kondo peak is split in half by a deep minimum, and the conductance vanishes at one value of the gate voltage. Tentative explanations for this unusual effect are proposed, including an interference process between two channels contributing to GG, with one more and one less particle than the exactly-solved cluster ground-state. The Hubbard interaction and fermionic statistics of electrons also appear to be important to understand this phenomenon. Although most of the calculations used a particle-hole symmetric Hamiltonian and formalism, results also presented here show that the conductance dip exists even when this symmetry is broken. The conductance cancellation effect obtained using numerical techniques is potentially interesting, and other many-body techniques should be used to confirm its existence
    corecore