2 research outputs found

    Development of Nano-Emulsions of Essential Citrus Oil Stabilized with Mesquite Gum

    Get PDF
    The use of nano-emulsions has great advantages over conventional macro-emulsions since the small droplet size allows to expand the options of applications besides presenting a greater surface area. This chapter focuses on the formulation of nano-emulsions of citrus essential oils in water, stabilized with a natural gum (mesquite gum), using a high pressure microfluidic homogenizer to obtain appropriate physicochemical characteristics and kinetic stability. When establishing the general conditions of the methods for obtaining nano-emulsions by high pressure homogenization, several formulations presented stability and size corresponding to nano-emulsions, and these were monitored during 4 months in order to study their stability as a function of time. Taking into account the results of size and stability, the best nano-emulsion obtained had a composition of Persian lemon oil (9.86%), mesquite gum (4.93%) Tween 80 (4.89%), Span 20 (1.45%), and deionized water (78.86%) with an average droplet size of 40 nm. In addition, the antibacterial activity studies also showed that this formulation had the best performance against common bacteria such as Staphylococcus aureus and Escherichia coli. The analysis of the minimum inhibitory concentration (MIC) shows that it is possible to prevent the growth of these particular bacteria using 6.25% of the best nano-emulsion formulations

    Mesquite Gum as a Novel Reducing and Stabilizing Agent for Modified Tollens Synthesis of Highly Concentrated Ag Nanoparticles

    No full text
    The synthesis that is described in this study is for the preparation of silver nanoparticles of sizes ranging from 10 nm to 30 nm with a defined shape (globular), confirmed by UV-vis, SEM, STEM and DLS analysis. This simple and favorable one-step modified Tollens reaction does not require any special equipment or other stabilizing or reducing agent except for a solution of purified mesquite gum, and it produces aqueous colloidal dispersions of silver nanoparticles with a stability thatexceeds three months, a relatively narrow size distribution, a low tendency to aggregate and a yield of at least 95% for all cases. Reaction times are between 15 min and 60 min to obtain silver nanoparticles in concentrations ranging from 0.1 g to 3 g of Ag per 100 g of reaction mixture. The proposed synthetic method presents a high potential for scale-up, since its production capacity is rather high and the methodology is simple.The synthesis that is described in this study is for the preparation of silver nanoparticles of sizes ranging from 10 nm to 30 nm with a defined shape (globular), confirmed by UV-vis, SEM, STEM and DLS analysis. This simple and favorable one-step modified Tollens reaction does not require any special equipment or other stabilizing or reducing agent except for a solution of purified mesquite gum, and it produces aqueous colloidal dispersions of silver nanoparticles with a stability thatexceeds three months, a relatively narrow size distribution, a low tendency to aggregate and a yield of at least 95% for all cases. Reaction times are between 15 min and 60 min to obtain silver nanoparticles in concentrations ranging from 0.1 g to 3 g of Ag per 100 g of reaction mixture. The proposed synthetic method presents a high potential for scale-up, since its production capacity is rather high and the methodology is simple
    corecore