179 research outputs found

    Evaluación espacio-temporal de las aguas y suelos de la zona colindante al lago de la Albufera de Valencia: Intento de recuperación

    Full text link
    La Albufera de Valencia, por su alto valor paisajístico y ambiental, es uno de los humedales más importantes de la península ibérica. Declarada Parque Natural en 1986 está incluida también en la lista de zonas húmedas de importancia internacional para las Aves (Convenio RAMSAR). El agua es el principal recurso del parque y su ciclo natural determina la vida de éste. En este sentido desde la expansión del cultivo del arroz a principios del pasado siglo, la evolución del humedal ha quedado condicionada al complejo sistema de regadío que controla las entradas y salidas de agua del lago. El manejo del arrozal supone el paso de aguas superficiales desde las parcelas superiores a las de inferior cota, hasta llegar a los denominados ¿tancats¿ (unidades hidrológicas características de la zona, formadas por parcelas de arroz a cota inferior a la lámina de agua del lago y situadas en el anillo circundante a éste). Los problemas a los que se ha enfrentado el Parque en las últimas décadas se refieren principalmente a la calidad del agua y sus implicaciones con la salinidad del suelo. Aunque el parque ha sido objeto de diversidad de estudios, ni se han definido sus suelos ni tampoco se ha realizado un estudio exhaustivo de la relación de las aguas freáticas y superficiales respecto a la salinidad. Es por ello que nace el presente trabajo de investigación que pretende caracterizar y evaluar la calidad de las aguas y los suelos del Parque desde el punto de vista espacial y temporal con respecto a la salinidad. Para ello se ha establecido un plan de trabajo en cuatro líneas de actuación que corresponden al control de las aguas superficiales y freáticas de 133 piezómetros instalados, el control de 54 acequias que aportan aguas a las parcelas de arroz, el control del nivel freático y de lámina libre en los piezómetros y, por último, el estudio de los suelos. Los diferentes análisis realizado son pH y Conductividad Eléctrica (CE), Na+ , K+ , Cl- , SO4 -2 , HCO3 - , CO3 -2 , Ca+2, Mg+2, Total de Sólidos Disueltos (TDS), Relación de Adsorción de Sodio (RAS) para aguas; y textura, materia orgánica, carbonatos, color, Conductividad Eléctrica del extracto de saturación CEe, pH del extracto, además del valor n, la humedad de saturación y los elementos gruesos, hierro, además de calcular del extracto de saturación los cationes y aniones principales en suelos. El estudio de la evolución durante 32 meses de la calidad de las aguas en los 133 piezómetros y las 54 acequias han permitido establecer que la zona norte del lago sufre salinización por la influencia de la capa freática elevada que está íntimamente relacionada con la distancia al lago y la cota además de con el ciclo del cultivo del arroz. La salinidad en las muestras de acequias y las de lámina libre presentan valores de CE aceptables para el uso en el arroz, habiéndose detectado una salinización de estas por el efecto de la capa freática fluctuante y la salinidad de los suelos. La clasificación taxonómica de los suelos se agrupan en tres subórdenes: Aquents, Fluvents y Salids. Con todos los resultados expuestos se ha caracterizado dos recursos importantísimos en el humedal cuyo conocimiento era parcial o nulo puesto que no existían datos de cotas piezométricas ni de calidad de agua ni variables edáficas a tanto detalle y con una densidad de muestreo tan alta.Moreno Ramón, H. (2013). Evaluación espacio-temporal de las aguas y suelos de la zona colindante al lago de la Albufera de Valencia: Intento de recuperación [Tesis doctoral]. Editorial Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/32827TESI

    Coffee husk mulch on soil erosion and runoff: experiences under rainfall simulation experiment

    Get PDF
    [EN] The high erosion rates found in the agriculture land make valuable the use of mulches to control the soil and water losses. Coffee husk (Coffea canephora var. robusta) can be one of those mulches. This paper evaluates how to apply the mulch in order to obtain the best effectiveness. An experimental factorial design 4×3×2 with two replicates was designed in a greenhouse with a total number of 48 cases. All the samples were deposited in trays of 0.51m2 and applied a simulated rain of 122mmh−1 during 21 min. The factors examined were the following: four soil classes; three treatments buried (B), surface (S) and non-residue (C) and the presence (WC) or absence (WOC) of the soil surface crusting. The coffee husk residue (S and B treatments) reduced runoff by 10.2 and 46% respectively, soil losses by 78.3 and 88.7% and sediment concentration by 77 and 84.4 %. The infiltration rate increased on average by 104 and 167 %, and time to runoff by 1.58 and 2.07 min respectively. Coffee husk is an efficient mulch to reduce the soil and water losses, although it could not completely cushion the influence of crust.Moreno-Ramón, H.; Quizembe, S.; Ibañez Asensio, S. (2014). Coffee husk mulch on soil erosion and runoff: experiences under rainfall simulation experiment. Solid Earth and Discussions. 5:851-862. doi:10.5194/se-5-851-2014S8518625Abdelkadir, A. and Yimer, F.: Soil water property variations in three adjacent land use types in the Rift Valley area of Ethiopia, J. Arid Environ., 75, 1067–1071, 2011.Adekalu, K. O., Okunade, D. A., and Osunbitan, J. A.: Compaction and mulching effects on soil loss and runoff from two southwestern Nigeria agriculture soils, Geoderma, 137, 226–230, 2006.Bakr, N., Weindorf, D. C., Zhu, Y., Arceneaux, A. E., and Selim, H. M.: Evaluation of compost/mulch as highway embankment erosion control in Louisiana at the plot-scale, J. Hydrol., 468–469, 257–267, 2012.Bekalo, S. A. and Reinhart, H.-W.: Fibers of coffee husk and hulls for the production of particleboard, Mater. Struct. 43, 1049–1060, 2010.Bielders, C. L., Baveye, P., Wilding, L. P., Drees, L. R., and Valentin, C.: Tillage-induced spatial distribution of surface crusts on a sandy Paleustult from Togo, Soil Sci. Soc. Am. J., 60, 843–855, 1996.Bodí, M. B., Muñoz-Santa, I., Armero, C., Doerr, S. H., Mataix-Solera, J., and Cerdà, A.: Spatial and temporal variations of water repellency and probability of its occurrence in calcareous Mediterranean rangeland soils affected by fire, Catena, 108, 14–25, 2013.Brodie, I. M. and Misra, R. K.: Evaluation of greenwaste mulch to control runoff quality from landfill sites during frequent storms, Water Air Soil Pollut., 201, 75–85, 2009.Calvo-Cases, A., Boix-Fayos, C., and Imeson, A. C.: Runoff generation, sediment movement and soil water behaviour on calcareous (limestone) slopes of some Mediterranean environments in southeast Spain, Geomorphology, 50, 269–291, 2003.Cerdà, A.: Seasonal variability of infiltration rates under contrasting slope conditions in southeast Spain, Geoderma, 69, 217–232, 1996.Cerdà, A.: The influence of aspect and vegetation on seasonal changes in erosion under rainfall simulation on a clay soil in Spain, Can. J. Soil Sci., 78, 321–330, 1998.Cerdà, A.: Effects of rock fragment cover on soil infiltration, interrill runoff and erosion, Eur. J. Soil Sci., 52, 59–68, 2001.Cerdà, A. and Doerr, S. H.: The effect of ash and needle cover on surface runoff and erosion in the immediate post-fire period, Catena, 74, 256–263, 2008.Choi, I. S., Wi, S. G., Kim, S.-B., and Bae, H.-J.: Conversion of coffee residue waste into bioethanol with using popping pretreatment, Bioresour. Technol., 125, 132–137, 2012.Donjadee, S. and Chinnarasri, C.: Effects of rainfall intensity and slope gradient on the application of vetiver grass mulch in soil and water conservation, Int. J. Sed. Res., 27, 168–177, 2012.El Kateb, H., Zhang, H., Zhang, P., and Mosland, R.: Soil erosion and surface runoff on different vegetation covers and slope gradients: a field experiment in sourthern Shaanxi Province, China, Catena, 105, 1–10, 2013.Ellison, W. D.: Studies of raindrop erosion. Agr. Eng., 25, 131–136 and 181–182, 1944.Fernández, C., Vega, J. A., Jiménez, E., Vieira, D. C. S, Merino, A., Ferreiro, A., and Fonturbel, T.: Seeding and mulching + seeding effects on post-fire runoff, soil erosion and species diversity in Galicia (NW Spain), Land Degrad. Dev., 23, 150–156, 2012.Findeling, A., Ruy, S., and Scopel, E.: Modeling the effects of a 9-partial residue mulch on runoff using a physically based approach, J. Hydrol., 275, 49–66, 2003.Franzluebbers, A. J.: Water infiltration and structure related to organic matter and its stratification with depth, Soil Till. Res., 66, 197-205, 2002.Gangwar, K. S., Singh, K. K., Sharma, S. K., and Tomar, O. K.: Alternative tillage and crop residue management in wheat after rice in sandy loam soils of Indo-Gangetic plains, Soil Till. Res., 88, 242–252, 2006.García-Orenes, F., Roldán, A., Mataix-Solera, J., Cerdà, A., Campoy, M., Arcenegui, V., and Caravaca, F.: Soil structural stability and erosion rates influenced by agricultural management practices in a semi-arid Mediterranean agro-ecosystem, Soil Use Manage., 28, 571–579, 2012.Gholami, L., Hamnidreza, S., and Homaee, M.: Straw Mulching effect on splash erosion, runoff, and sediment yield from eroded plots, Soil Sci.Soc.Am.J., 77, 268–278. 2012.Grismer, M. E. and Hogan, M. P.: Simulated rainfall evaluation of revegetation/mulch erosion control in the lake Tahoe basin-1: Method assessment, Land degrade. Dev., 15, 573–588, 2004.Grismer, M.E., and Hogan, M.P.: Simulated rainfall evaluation of revegetation/mulch erosion control in the lake Tahoe basin-3: Soil treatment effects, Land degrade. Dev., 16, 489-501, 2005.Groen, A. H. and Woods, S. W.: Effectiveness of aerial seeding and straw mulch for reducing post-wildfire erosion, north-western Montana, USA. Int. J. Wildl. Fire 17, 559–571, 2008.Grosbellet, C., Vidal-Beaudet, L., Caubel, V., and Charpentier, S.: Improvement of soil structure formation by degradation of coarse organic matter, Geoderma, 162, 27–38, 2011.Hockbridge E.: Healthy soil: healthy people, healthy planet, Soil Health, 7, 9–11, 2012.Horton, R. E.: An approach towards a physical interpretation of infiltration capacity. Soil Sci. Soc. Am. Pro., 5, 399–417, 1940.Hsu, S. M., Masce, P. E., Ni, C. F., and Hung, P. H.: Assessment of three infiltration formulas based on model fitting on Richards Equation, J. Hydrol. Eng., 7, 373–379, 2002.Huang, J., Wu, P., and Zhao, X.: Effects of rainfall intensity, underlying surface and slope gradient on soil in?ltration under simulated rainfall experiments, Catena, 104, 93–102, 2012.Ibáñez, S.: Estudio de la erosión hídrica en suelos desarrollados sobre margas: métodos de estima en bancales abandonados. (Doctoral Tesis). Universidad Politécnica de Valencia, Departamento de Producción Vegetal, 396 pp., 2001.Jiménez, M. A., Fernández-Ondoño, E., Ripoll, M. A., Castro-Rodriguez, J., Huntsinger, L., and Navarro, F. B.: Stones and organic mulches improve the Quercus Ilex L. Afforestation success under Mediterranean climatic conditions, Land Degrad. Dev., https://doi.org/10.1002/ldr.2250, 2013.Jin, K., Cornelis, W. M., Gabriels, D., Schiettecatte, W., De Neve, S., Lu, J., Buysse, T., Wu, H., Cai D., Jin, J., and Harmann, R.: Soil management effects on runoff and soil loss from field rainfall simulation, Catena, 75, 191–199, 2008.Kasongo, R. K., Verdoodt, A., Kanyankagotem P., Baert, G., and Van Ranst, E.: Coffee waste as an alternative fertilizer with soil improving properties for sandy soils in humid tropical environments, Soil Use Manage., 27, 94–102, 2011.Kinell, P. I. A.: Raindrop-impact-induced erosion processes and prediction: a review, Hydrol. Process. 19, 2815–2844, 2005.Kukal, S. S. and Sarjkar, M.: Splash erosion and infiltration in relation to mulching and polyvinyl alcohol application in semi-arid tropics, Arch. Agron. Soil. Sci., 56, 697–705, 2010.Laws, J. O.: Recent studies in raindrops and erosion. Agr. Eng., 21, 431–433, 1940.Lee, J.-W., Park, C.-M., and Rhee, H.: Revegetation of decomposed granite roadcuts in Korea: Developing Digger, evaluating cost effectiveness, and determining dimension of drilling holes, revegetation species, and mulching treatment, Land Degrad. Dev., 24, 591–604, 2013.Le Bissonnais, Y.: Experimental study and modelling of surface crusting processes. . In: Soil erosion – experiments and models, edited by: Bryan R. B., Catena Suppl. 17. Catena Verlag, CAremlingen-Destedt, Germany, 13–28, 1990.Le Bissonnais, Y., and Singer, M. J.: Crusting, runoff, and erosion response to soil water content and successive rainfalls, Soil Sci. Soc. Am. J., 56, 1898–1903, 1992.Le Bissonnais, Y., Cerdana, C., Lecomtea, V., Benkhadraa, H., Souchèreb, V., and Martin, P.: Variability of soil surface characteristics influencing runoff and interrill erosion, Catena, 62, 111–124, 2005.Leys, A., Govers, G., Gillijns, K., and Poesen, J.: Conservation tillage on loamy soils: explaining the variability in interrill runoff and erosion reduction, Eur. J. Soil Sci., 558, 1425–1436, 2007.Leys, A., Govers, G., Gillijns, K., Berkmoes, E., and Takken, I.: Scale effects on runoff and erosion losses from arable land under conservation and conventional tillage: the role of residue cover, Eur. J. Hydrol., 390, 143–154, 2010.Ma, I. J. and Li, X.-Y.: Water accumulation in soil by gravel and sand mulches: Influence of textural composition and thickness of mulch layers, J. Arid Environ., 75, 432–437, 2011.Mashingaidze, N., Madakadze, C., Twomlow, S., Nyamangara, J., and Hove, L.: Crop yield and weed growth under conservation agriculture in semi-arid Zimbabwe, Soil Till. Res., 124, 102–110, 2012.Montenegro, A. A., Abrantes, J. R. C. B., de Lima, J. L. M. P., Singh, V. P., and Santos, T. E. M.: Impact of mulching on soil and water dynamics under intermittent simulated rainfall, Catena, 109, 139–149, 2013.Montgomery, D. R.: Soil and Civilization: Time for a Greener Revolution, Food Ethics, 7, 4–6, 2012.Morgan, R. P. C.: Soil erosion and conservation. Second edition, Longman, ISBN0582244927, 2nd edition, 198 pp., 1995.Murthy, P. S. and Naidu, M. M.: Sustainable management of coffee industry by-products and value addition – A review, Resour. Conserv. Recy., 66, 45–58, 2012.Nearing, M. A., and Bradford, J. M.: Single waterdrop splash detachment and mechanical properties of soils. Soil. Sci. Soc. Am. J., 49, 547–552, 1985.Pandey, C., Soccol, C. R., Nigam, P., Brand, B., Mohan, R., and Roussos, S.: Biotecnological potential of coffee pulp and coffee husk for bioprocesses, Biochem. Eng. J., 6, 153–162, 2000.Prata, E. R. B. A. P., and Oliveira, L. S.: Fresh coffee husks as potential sources of anthocyanins, LWT-Food Sci. Technol., 40, 1555–1560, 2007.Prats, S. A., MacDonald, L. H., Monteiro, M., Ferreira, A. J. D., Coelho, C. O. A., and Keizer, J. J.: Effectiveness of forest residue mulching in reducing post-fire runoff and erosion in a pine and eucalypt plantation in north-central Portugal, Geoderma 191, 115–124, 2012.Poesen, J. W. A., and Lavee, H.: Effects of size and incorporation of synthetic mulch on runoff and sediment yield from interrils in a laboratory study with simulated rainfall, Soil Till. Res., 21, 209–223, 1991.Saenger, M., Hartge, E.-U., Werthe, J., Ogada, T., and Siagi, Z.: Combustion of coffee husk, Renew. Ener. 23, 103–121, 2001.Santos, J. C. F. I., Souza, I. F., Mendes, A. N. G., Morais, A. R., Conceição, H. E. O., and Marinho, J. T. S.: Allelophatic effect of coffee and rice husks arranged in soil layers on the germination and initial growth of Amaranthus viridis, Planta Daninha, 19, 197–207, 2001.Singh, B., Chanasyk, D. S., McGill, W. B., and Nyborg, M. P. K.: Residue and tillage management effects on soil properties of a typic cryoboroll under continuous barley, Soil Till. Res., 72, 117–133, 1994.Soil Survey Staff: Kellogg Soil Survey Laboratory Methods Manual, Soil Survey Investigations Report No. 42, Version 5.0, edited by: Burt, R. and Soil Survey Staff, US Department of Agriculture, Natural Resources Conservation Service, 2014.Stavi, I., Lal, R., Jones, S., and Reeder, R. C.: Implications of cover crops for soil quality and geodiversity in a humid-temperate region in midwestern USA), Land Degrad. Dev., 23, 322- 330, 2012.Telis, P. A.: Estimation of infiltration rates of saturated soils at selected sites in the Caloosahatchee river basin, Southwestern Florida US Geological Survey, Open-File Report 01-65, 2001.Thierfelder, C. and Wall, P. C.: Effects of conservation agriculture techniques on infiltration and soil water content in Zambia and Zimbabwe. Soil Till. Res., 105, 217–227, 2009.Thierfelder, C., Mwila, M., and Rusinamhodzi, L.; Conservation agriculture in eastern and southern provinces of Zambia: Long-term effects on soil quality and maize productivity. Soil Till. Res., 126, 246–258, 2013.Vandervaere, J. P., Vauclin, M., Haverkamp, R., Peugeot, C., Thony, J. L., and Gilfedder, M.: Prediction of crust-induced surface runoff with disc infiltrometer data, Soil Sci., 163, 9–21, 1998.Zhao, G., Mu, X., Wen, Z., Wang, F., Gao, P.: Soil erosion, conservation, and Eco-environment changes in the Loess Plateau of China, Land Degrad. Dev., 24, 499–510, 2013.Ziadat, F. M. and Taimeh, A. Y.: Effect of rainfall intensity, slope and land use and antecedent soil moisture on soil erosion in an arid environment, Land Degrad. Dev., 24, 582–590, 2013

    Rice Paddy Soil Seedbanks Composition in a Mediterranean Wetland and the Influence of Winter Flooding

    Full text link
    [EN] Soil seedbanks are defined in composition and quantity by many environmental factors inherent to a specific area, and they can be an indicator of the potential problems of weeds in crops. In Valencia (Spain), rice is cultivated with continuous flooding during the growing season, and after harvesting, many of the paddy fields are flooded again during the winter. This study investigates the paddy fields' soil seedbank composition in this Mediterranean paddy area and the effect of winter flooding on the soil seedbank. Multispectral images from the Sentinel-2 satellite were used to characterise the water level of paddies in winter. Satellite images facilitated the characterisation of winter flooding in fields. Soil samples from sixty-nine points distributed over 15,000 ha of paddies were used to determine the composition of the seedbank plots. The data were spatially represented by geographic information systems. The species that contributed most to the paddy seedbank were Cyperus difformis L., an important rice weed in the Mediterranean area, and other rice weeds such as Echinochloa sp. and Leptochloa fusca subspecies. Other species with a great contribution to the seedbank are species that develop in paddy fields that produce a large quantity of small seeds, such as Lemna sp., Polypogon monspeliensis (L.) Desf., and Nasturtium officinale R. Br. These species interfere little or do not interfere with the rice crop. The study revealed that in general, flooding reduced seedbank density with differences between species. Furthermore, the influence of winter flooding on the different plant species obtained as well as their distribution maps are a further step in this protected area from the point of view of weed management in rice crop, as well as in the management of this Mediterranean wetland.The Spanish Society ofWeed Science (SEMh) has contributed by granting one of the authors, F. Galan, funding to carry out this research. This research has not received any other external funding.Osca Lluch, JM.; Galán, F.; Moreno-Ramón, H. (2021). Rice Paddy Soil Seedbanks Composition in a Mediterranean Wetland and the Influence of Winter Flooding. Agronomy. 11(6):1-16. https://doi.org/10.3390/agronomy1106119911611

    Métodos para la determinación del coeficiente de escorrentía

    Full text link
    En este artículo analizan los diferentes métodos para estimar la producción de escorrentía a partir de las características del terreno sobre el que se produce la precipitación pluvialIbañez Asensio, S.; Moreno Ramón, H.; Gisbert Blanquer, JM. (2011). Métodos para la determinación del coeficiente de escorrentía. http://hdl.handle.net/10251/1078

    Pyrethroids levels in paddy field water under Mediterranean conditions: measurements and distribution modelling

    Full text link
    [EN] The cultivation of rice (Oriza sativa L.) under Mediterranean conditions regularly requires the use of treated wastewater due to shortage of freshwater. As a consequence, the intensification of rice production to supply the uprising demand of grain could break the stability between agriculture and environment. In this work, we studied the occurrence and distribution of pyrethroids in surface water and groundwater collected during two periods (flooding and dry soil conditions) in paddy fields located in the Spanish Mediterranean coast. Pyrethroids were detected at concentrations ranging from 14 to 1450 ng L-1 in surface water and from 6 to 833 ng L-1 in groundwater. The results obtained were valuated statistically using principal component analysis, and differences between both sampling campaigns were found, with lower concentrations of the target compounds during the flooding sampling event. Moreover, a geographic information system program was used to represent a model distribution of the obtained results, showing wastewater treatment plants as the main sources of contamination and the decrease of pyrethroids during flooding condition when water flows over the paddy fields. The impact of these compounds on water quality was discussed.Authors wish to thank INIA for the predoctoral fellowship (R. Aznar) and Spanish Ministry of Economy and Competitiveness RTA2014-00012-C03-01 for financial support.Aznar, R.; Sánchez Brunete, C.; Albero, B.; Moreno-Ramón, H.; Tadeo, JL. (2017). Pyrethroids levels in paddy field water under Mediterranean conditions: measurements and distribution modelling. Paddy and Water Environment. 15(2):307-316. https://doi.org/10.1007/s10333-016-0550-2S307316152Albalawneh A, Chang TK, Chou CS (2015) Impacts on soil quality from long-term irrigation with treated greywater. Paddy Water Environ. doi: 10.1007/s10333-015-0499-6Aznar R, Moreno-Ramón H, Albero B, Sánchez-Brunete C, Tadeo JL (2016a) Spatio-temporal distribution of pyrethroids in soil in mediterranean paddy fields. J Soils Sediments. doi: 10.1007/s11368-016-1417-2Aznar R, Albero B, Sánchez-Brunete C, Miguel E, Moreno-Ramón H, Tadeo JL (2016b) Simultaneous determination of multiclass emerging contaminants in aquatic plants by ultrasound-assisted matrix solid-phase dispersion and GC–MS. Environ Sci Pollut Res. doi: 10.1007/s11356-016-6327-8Campo J, Masia A, Blasco C, Pico Y (2013) Occurrence and removal efficiency of pesticides in sewage treatment plants of four Mediterranean River Basins. J Hazard Mater 263:146–157Corcellas C, Eljarrat E, Barceló D (2015) First report of pyrethroid bioaccumulation in wild river fish: a case study in Iberian river basins (Spain). Environ Int 75:110–116Directive 2006/118/EC of the European Parliament and of the Council of 12 December 2006 on the protection of groundwater against pollution and deterioration. http://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=URISERV:l28139&from=ES Accessed 14 Dec 2015Duran JJ, García de Domingo A, López-Geta JA, Robledo PA, Soria JM (2005) Los Humedales del Mediterráneo español: modelos geológicos e hidrogeológicos. Instituto Geológico y Minero Español, Madrid España. 160European Commission (2005) Review report for the active substance Esfenvalerate, 6846/VI/97-finalFarnham IM, Singh AK, Stetzenbach KJ, Johannesson KH (2002) Treatment of nondetects in multivariate analysis of groundwater geochemistry data. Chemometr Intell Lab 60:265–281Feo ML, Ginebreda A, Eljarrat E, Barcelo D (2010a) Presence of pyrethroid pesticides in water and sediments of Ebro River Delta. J Hazard Mater 393:156–162Feo ML, Eljarrat E, Barcelo D (2010b) A rapid and sensitive analytical method for the determination of 14 pyrethroids in water samples. J Chromatogr A 1217:2248–2253Gimenez-Forcada E (2014) Space/time development of seawater intrusion: a study case in Vinaroz coastal plain (Eastern Spain) using HFE-Diagram, and spatial distribution of hydrochemical facies. J Hydrol 517:617–627Hendley P, Holmes C, Kay S, Maund SJ, Travis KZ, Zhang MH (2001) Probabilistic risk assessment of cotton pyrethroids: iII. A spatial analysis of the Mississippi, USA, cotton landscape. Environ Toxicol Chem 20:669–678Hildebrandt A, Lacorte S, Barcelo D (2007) Assessment of priority pesticides, degradation products, and pesticide adjuvants in groundwaters and top soils from agricultural areas of the Ebro river basin. Anal Bioanal Chem 387:1459–1468Hildebrandt A, Guillamon M, Lacorte S, Tauler R, Barcelo D (2008) Impact of pesticides used in agriculture and vineyards to surface and groundwater quality (North Spain). Water Res 42:3315–3326Hladik ML, Kuivila KM (2009) Assessing the occurrence and distribution of pyrethroids in water and suspended sediments. J Agric Food Chem 57:9079–9085Kuivila KM, Hladik ML, Ingersoll CG, Kemble NE, Moran PW, Calhoun DL, Nowell LH, Gilliom RJ (2012) Occurrence and potential sources of pyrethroid insecticides in stream sediments from seven U.S. metropolitan areas. Environ Sci Technol 46:4297–4303McManus SL, Richards KG, Grant J, Mannix A, Coxon CE (2014) Pesticide occurrence in groundwater and the physical characteristics in association with these detections in Ireland. Environ Monit Assess 186:7819–7836Money E, Carter GP, Serre ML (2009) Using river distances in the space/time estimation of dissolved oxygen along two impaired river networks in New Jersey. Water Res 43:1948–1958Monica N, Choi K (2016) Temporal and spatial analysis of water quality in Saemangeum watershed using multivariate statistical techniques. Paddy Water Environ 14:3–17Moreno-Ramón H, Marqués-Mateu A, Ibáñez-Asensio S, Gisbert JM (2015) Wetland soils under rice management and seawater intrusion: characterization and classification. Spa J Soil Sci 5(2):111–129Moschet C, Vermeirssen ELM, Seiz R, Pfefferli H, Hollender J (2014) Picogram per liter detections of pyrethroids and organophosphates in surface waters using passive sampling. Water Res 66:411–422Pistocchi A, Vizcaino P, Hauck M (2009) A GIS model-based screening of potential contamination of soil and water by pyrethroids in Europe. J Environ Manag 90:3410–3421Rodríguez-Liébana JA, ElGouzi S, Mingorance MD, Castillo A, Peña A (2014) Irrigation of a Mediterranean soil under fields’ conditions with urban wastewater: effect on pesticides behavior. Agric Ecosyst Environ 185:176–185SANCO-12571 (2013) Guidance document on analytical quality control and validation procedures for pesticide residues analysis in food and feed. European Commission. http://ec.europa.eu/food/plant/pesticides/guidance_documents/docs/qualcontrol_en.pdf . Accessed 4 April 2016Smiley PC Jr, King KW, Fausey NR (2014) Annual and seasonal differences in pesticides mixtures within channelized agricultural headwater streams in central Ohio. Agric Ecosyst Environ 193:83–95Soil Survey Staff (2014) Keys to soil taxonomy, 12th edn. USDA Natural Resources Conservation Service, Washington. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/survey/class/taxonomy/?cid=nrcs142p2_053580 . Accessed 4 April 2016Solomon KR, Giddings JM, Maund SJ (2001) Probabilistic risk assessment of cotton pyrethroids: i. Distributional analyses of laboratory aquatic toxicity data. Environ Toxicol Chem 20:652–659Sprecher SW (2008) Installing Monitoring wells in soils. Version 1.0. USDA—NRCS (United States Department of Agriculture)-(Natural Resources Conservation Service). Lincoln. USA. http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_052914.pdf . Accessed 4 April 2016Swift MJ, Izac AMN, van Noordwijk M (2015) Biodiversity and ecosystem services in agriculture landscapes-are we asking the right questions? Agric Ecosyst Environ 104:113–134Weston DP, Holmes RW, You J, Lydy MJ (2005) Aquatic toxicity due to residential use of pyrethroid insecticides. Environ Sci Technol 39:9778–9784Weston DP, Holmes RW, Lydy MJ (2009) Residential runoff as a source of pyrethroid pesticides to urban creeks. Environ Pollut 157:287–294Weston DP, Ramil HL, Lydy MJ (2013) Pyrethroid insecticides in municipal wastewater. Environ Toxicol Chem 32:2460–246

    Estima de precipitaciones máximas por el método de Gumbell

    Full text link
    En este artículo se explica la forma de estimar la precipitación máxima esoerada en una zona mediante el método de Gumbell, método especialmente elaborado para el tratamiento estadístico de episodios de lluvia de gran torrencialidad, y por lo tanto de carácter excepcional.Ibañez Asensio, S.; Moreno Ramón, H.; Gisbert Blanquer, JM. (2011). Estima de precipitaciones máximas por el método de Gumbell. http://hdl.handle.net/10251/1077

    La Escala de Mohs: Dureza de los Minerales

    Full text link
    Descripción del concepto de dureza de un mineral y su medida mediante la escala de MohsMoreno Ramón, H.; Ibañez Asensio, S. (2018). La Escala de Mohs: Dureza de los Minerales. http://hdl.handle.net/10251/105177DE

    Procesos formadores de pérdida

    Full text link
    En este artículo se presentan las idas clave relativas a la formación de horizontes como consecuencia de la pérdida de materiales o componentes del perfil del suelo. El lector de este documento será capaz de entender las peculiaridades de los procesos formadores de pérdida. identificando las formas en las que los materiales son eliminados del perfil del suelo y las sustancias que pueden verse afectadas. Estos conocimientos serán de gran utilidad a la hora de comprender las propiedades de los suelos agrícolas y forestales, así como para su clasificación y evaluación.Ibañez Asensio, S.; Moreno Ramón, H. (2019). Procesos formadores de pérdida. http://hdl.handle.net/10251/122814DE

    Gamificación en el entorno universitario: Un break out educativo en asignaturas de Génesis de Suelos

    Full text link
    [EN] Gamification is one of the most used methodologies in the educational field in the last years. More Specifically, it has been implanted in primary and secondary education levels, being reluctant to apply it in higher education areas. Faced with a tedious and monotonous practical classes with a lot of information on mineralogical contents, it is intended to apply this methodology in a first course of the degrees of forestry and agronomic Engineering at the Universitat Politècnica de Valencia. A total of 173 students carried out a practical activity with the use of different tests to recognize minerals (crossword puzzles, QR codes, etc.). The main objective was to motivate the student and to learn and strengthen the knowledge previously acquired by having to perform independently at home a previous work (flip teaching). Outcomes showed that gamification motivates the student, since more than 80% of the surveyed students considered this activity as motivating, classifying it as adequate for the university level more than 90% of the students.[ES] La gamificación es una de las metodologías actuales más implantadas en el ámbito educacional en los últimos años. Más concretamente ha sido implantada en niveles de educación de primaria y secundaria, siendo reticente su aplicación en ámbitos de la educación superior. Frente a una clase tediosa y monótona, llena de contenidos de mineralogía, se pretende aplicar dicha metodología en una asignatura de primer curso de los grados de Ingeniería forestal y agronómica en la Universitat Politècnica de Valencia. Un total de 173 alumnos realizaron una actividad practica con el uso de diferentes pruebas para reconocer minerales (crucigramas, códigos qr, etc.). El objetivo principal era motivar al alumno y que este aprendiera y afianzara los conocimientos adquiridos anteriormente al tener que realizar de forma autónoma en casa un trabajo previo (flip teaching). Los resultados demostraron que la gamificación motiva al estudiante, puesto que más del 80% del alumnado encuestado vio motivante dicha actividad, clasificándola como adecuada para el nivel universitario más del 90% de los alumnos.Moreno Ramón, H.; Ibañez Asensio, S. (2019). Gamificación en el entorno universitario: Un break out educativo en asignaturas de Génesis de Suelos. En IN-RED 2019. V Congreso de Innovación Educativa y Docencia en Red. Editorial Universitat Politècnica de València. 1034-1041. https://doi.org/10.4995/INRED2019.2019.10529OCS1034104

    Procesos formadores de ganancia

    Full text link
    En este artículo se presentan las idas clave relativas a los procesos que dan origen a la formación de los diferentes tipos de suelos que podemos encontrar en el mundo. a la formación de horizontes como consecuencia de la incorporación de materiales nuevos al perfil del suelo. El lector de este documento será capaz de entender: las peculiaridades de los procesos de adición de sustancias en el suelo, identificar las formas en las que las partículas (materiales orgánicos y materiales minerales) se incorporan y, finalmente, conocer sustancias que pueden verse afectadas. Estos conocimientos son necesarios en todo proceso de identificación y clasificación de los horizontes del perfil del suelo.Ibañez Asensio, S.; Moreno Ramón, H. (2019). Procesos formadores de ganancia. http://hdl.handle.net/10251/122732DE
    corecore