4 research outputs found

    Therapeutic targeting of the RB1 pathway in retinoblastoma with the oncolytic adenovirus VCN-01

    No full text
    Retinoblastoma is a pediatric solid tumor of the retina activated upon homozygous inactivation of the tumor suppressor RB1. VCN-01 is an oncolytic adenovirus designed to replicate selectively in tumor cells with high abundance of free E2F-1, a consequence of a dysfunctional RB1 pathway. Thus, we reasoned that VCN-01 could provide targeted therapeutic activity against even chemoresistant retinoblastoma. In vitro, VCN-01 effectively killed patient-derived retinoblastoma models. In mice, intravitreous administration of VCN-01 in retinoblastoma xenografts induced tumor necrosis, improved ocular survival compared with standard-of-care chemotherapy, and prevented micrometastatic dissemination into the brain. In juvenile immunocompetent rabbits, VCN-01 did not replicate in retinas, induced minor local side effects, and only leaked slightly and for a short time into the blood. Initial phase 1 data in patients showed the feasibility of the administration of intravitreous VCN-01 and resulted in antitumor activity in retinoblastoma vitreous seeds and evidence of viral replication markers in tumor cells. The treatment caused local vitreous inflammation but no systemic complications. Thus, oncolytic adenoviruses targeting RB1 might provide a tumor-selective and chemotherapy-independent treatment option for retinoblastoma.Fil: Pascual-Pasto, Guillem. Hospital Sant Joan de Déu; EspañaFil: Bazan-Peregrino, Miriam. No especifíca;Fil: Olaciregui, Nagore G.. Hospital Sant Joan de Déu; EspañaFil: Restrepo Perdomo, Camilo A.. Hospital Sant Joan de Déu; EspañaFil: Mato Berciano, Ana. No especifíca;Fil: Ottaviani, Daniela. Centre National de la Recherche Scientifique; FranciaFil: Weber, Klaus. No especifíca;Fil: Correa, Genoveva. Hospital Sant Joan de Déu; EspañaFil: Paco, Sonia. Hospital Sant Joan de Déu; EspañaFil: Vila Ubach, Monica. Hospital Sant Joan de Déu; EspañaFil: Cuadrado Vilanova, Maria. Hospital Sant Joan de Déu; EspañaFil: Castillo Ecija, Helena. Hospital Sant Joan de Déu; EspañaFil: Botteri, Gaia. Hospital Sant Joan de Déu; EspañaFil: Garcia Gerique, Laura. Hospital Sant Joan de Déu; EspañaFil: Moreno Gilabert, Helena. Hospital Sant Joan de Déu; EspañaFil: Gimenez Alejandre, Marta. No especifíca;Fil: Alonso Lopez, Patricia. No especifíca;Fil: Farrera Sal, Marti. No especifíca;Fil: Torres Manjon, Silvia. Instituto de Investigación Biomédica de Bellvitge; EspañaFil: Ramos Lozano, Dolores. Instituto de Investigación Biomédica de Bellvitge; EspañaFil: Moreno, Rafael. Instituto de Investigación Biomédica de Bellvitge; EspañaFil: Aerts, Isabelle. Centre National de la Recherche Scientifique; FranciaFil: Doz, François. Universite Paris Descartes; Francia. Centre National de la Recherche Scientifique; FranciaFil: Cassoux, Nathalie. Centre National de la Recherche Scientifique; Francia. Universite Paris Descartes; FranciaFil: Chapeaublanc, Elodie. Centre National de la Recherche Scientifique; FranciaFil: Torrebadell, Montserrat. Hospital Sant Joan de Déu; EspañaFil: Roldan, Monica. Hospital Sant Joan de Déu; EspañaFil: König, Andrés. No especifíca;Fil: Suñol, Mariona. Hospital Sant Joan de Déu; EspañaFil: Claverol, Joana. Hospital Sant Joan de Déu; EspañaFil: Lavarino, Cinzia. Hospital Sant Joan de Déu; EspañaFil: De Torres, Carmen. Hospital Sant Joan de Déu; EspañaFil: Fu, Ligia. Hospital Escuela Universitario; HondurasFil: Radvanyi, François. Centre National de la Recherche Scientifique; FranciaFil: Munier, Francis L.. Hopital Ophtalmique Jules Gonin; SuizaFil: Catalá-Mora, Jaume. Hospital Sant Joan de Déu; EspañaFil: Mora, Jaume. Hospital Sant Joan de Déu; EspañaFil: Alemany, Ramón. Instituto de Investigación Biomédica de Bellvitge; EspañaFil: Cascalló, Manel. No especifíca;Fil: Chantada, Guillermo Luis. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Gobierno de la Ciudad de Buenos Aires. Hospital de Pediatría "Juan P. Garrahan"; ArgentinaFil: Montero Carcaboso, Angel. Hospital Sant Joan de Déu; Españ

    Deep-sequencing reveals broad subtype-specific HCV resistance mutations associated with treatment failure.

    No full text
    A percentage of hepatitis C virus (HCV)-infected patients fail direct acting antiviral (DAA)-based treatment regimens, often because of drug resistance-associated substitutions (RAS). The aim of this study was to characterize the resistance profile of a large cohort of patients failing DAA-based treatments, and investigate the relationship between HCV subtype and failure, as an aid to optimizing management of these patients. A new, standardized HCV-RAS testing protocol based on deep sequencing was designed and applied to 220 previously subtyped samples from patients failing DAA treatment, collected in 39 Spanish hospitals. The majority had received DAA-based interferon (IFN) α-free regimens; 79% had failed sofosbuvir-containing therapy. Genomic regions encoding the nonstructural protein (NS) 3, NS5A, and NS5B (DAA target regions) were analyzed using subtype-specific primers. Viral subtype distribution was as follows: genotype (G) 1, 62.7%; G3a, 21.4%; G4d, 12.3%; G2, 1.8%; and mixed infections 1.8%. Overall, 88.6% of patients carried at least 1 RAS, and 19% carried RAS at frequencies below 20% in the mutant spectrum. There were no differences in RAS selection between treatments with and without ribavirin. Regardless of the treatment received, each HCV subtype showed specific types of RAS. Of note, no RAS were detected in the target proteins of 18.6% of patients failing treatment, and 30.4% of patients had RAS in proteins that were not targets of the inhibitors they received. HCV patients failing DAA therapy showed a high diversity of RAS. Ribavirin use did not influence the type or number of RAS at failure. The subtype-specific pattern of RAS emergence underscores the importance of accurate HCV subtyping. The frequency of "extra-target" RAS suggests the need for RAS screening in all three DAA target regions

    Subcutaneous anti-COVID-19 hyperimmune immunoglobulin for prevention of disease in asymptomatic individuals with SARS-CoV-2 infection: a double-blind, placebo-controlled, randomised clinical trialResearch in context

    No full text
    Summary: Background: Anti-COVID-19 hyperimmune immunoglobulin (hIG) can provide standardized and controlled antibody content. Data from controlled clinical trials using hIG for the prevention or treatment of COVID-19 outpatients have not been reported. We assessed the safety and efficacy of subcutaneous anti-COVID-19 hyperimmune immunoglobulin 20% (C19-IG20%) compared to placebo in preventing development of symptomatic COVID-19 in asymptomatic individuals with SARS-CoV-2 infection. Methods: We did a multicentre, randomized, double-blind, placebo-controlled trial, in asymptomatic unvaccinated adults (≥18 years of age) with confirmed SARS-CoV-2 infection within 5 days between April 28 and December 27, 2021. Participants were randomly assigned (1:1:1) to receive a blinded subcutaneous infusion of 10 mL with 1 g or 2 g of C19-IG20%, or an equivalent volume of saline as placebo. The primary endpoint was the proportion of participants who remained asymptomatic through day 14 after infusion. Secondary endpoints included the proportion of individuals who required oxygen supplementation, any medically attended visit, hospitalisation, or ICU, and viral load reduction and viral clearance in nasopharyngeal swabs. Safety was assessed as the proportion of patients with adverse events. The trial was terminated early due to a lack of potential benefit in the target population in a planned interim analysis conducted in December 2021. ClinicalTrials.gov registry: NCT04847141. Findings: 461 individuals (mean age 39.6 years [SD 12.8]) were randomized and received the intervention within a mean of 3.1 (SD 1.27) days from a positive SARS-CoV-2 test. In the prespecified modified intention-to-treat analysis that included only participants who received a subcutaneous infusion, the primary outcome occurred in 59.9% (91/152) of participants receiving 1 g C19-IG20%, 64.7% (99/153) receiving 2 g, and 63.5% (99/156) receiving placebo (difference in proportions 1 g C19-IG20% vs. placebo, −3.6%; 95% CI -14.6% to 7.3%, p = 0.53; 2 g C19-IG20% vs placebo, 1.1%; −9.6% to 11.9%, p = 0.85). None of the secondary clinical efficacy endpoints or virological endpoints were significantly different between study groups. Adverse event rate was similar between groups, and no severe or life-threatening adverse events related to investigational product infusion were reported. Interpretation: Our findings suggested that administration of subcutaneous human hyperimmune immunoglobulin C19-IG20% to asymptomatic individuals with SARS-CoV-2 infection was safe but did not prevent development of symptomatic COVID-19. Funding: Grifols

    Intraoperative positive end-expiratory pressure and postoperative pulmonary complications: a patient-level meta-analysis of three randomised clinical trials.

    No full text
    corecore