31,320 research outputs found

    Study of off-diagonal disorder using the typical medium dynamical cluster approximation

    Get PDF
    We generalize the typical medium dynamical cluster approximation (TMDCA) and the local Blackman, Esterling, and Berk (BEB) method for systems with off-diagonal disorder. Using our extended formalism we perform a systematic study of the effects of non-local disorder-induced correlations and of off-diagonal disorder on the density of states and the mobility edge of the Anderson localized states. We apply our method to the three-dimensional Anderson model with configuration dependent hopping and find fast convergence with modest cluster sizes. Our results are in good agreement with the data obtained using exact diagonalization, and the transfer matrix and kernel polynomial methods.Comment: 10 pages, 8 figure

    Finite Cluster Typical Medium Theory for Disordered Electronic Systems

    Get PDF
    We use the recently developed typical medium dynamical cluster (TMDCA) approach~[Ekuma \etal,~\textit{Phys. Rev. B \textbf{89}, 081107 (2014)}] to perform a detailed study of the Anderson localization transition in three dimensions for the Box, Gaussian, Lorentzian, and Binary disorder distributions, and benchmark them with exact numerical results. Utilizing the nonlocal hybridization function and the momentum resolved typical spectra to characterize the localization transition in three dimensions, we demonstrate the importance of both spatial correlations and a typical environment for the proper characterization of the localization transition in all the disorder distributions studied. As a function of increasing cluster size, the TMDCA systematically recovers the re-entrance behavior of the mobility edge for disorder distributions with finite variance, obtaining the correct critical disorder strengths, and shows that the order parameter critical exponent for the Anderson localization transition is universal. The TMDCA is computationally efficient, requiring only a small cluster to obtain qualitative and quantitative data in good agreement with numerical exact results at a fraction of the computational cost. Our results demonstrate that the TMDCA provides a consistent and systematic description of the Anderson localization transition.Comment: 20 Pages, 19 Figures, 3 Table

    Kerr-Schild type initial data for black holes with angular momenta

    Full text link
    Generalizing previous work we propose how to superpose spinning black holes in a Kerr-Schild initial slice. This superposition satisfies several physically meaningful limits, including the close and the far ones. Further we consider the close limit of two black holes with opposite angular momenta and explicitly solve the constraint equations in this case. Evolving the resulting initial data with a linear code, we compute the radiated energy as a function of the masses and the angular momenta of the black holes.Comment: 13 pages, 3 figures. Revised version. To appear in Classical and Quantum Gravit

    A Typical Medium Dynamical Cluster Approximation for the Study of Anderson Localization in Three Dimensions

    Get PDF
    We develop a systematic typical medium dynamical cluster approximation that provides a proper description of the Anderson localization transition in three dimensions (3D). Our method successfully captures the localization phenomenon both in the low and large disorder regimes, and allows us to study the localization in different momenta cells, which renders the discovery that the Anderson localization transition occurs in a cell-selective fashion. As a function of cluster size, our method systematically recovers the re-entrance behavior of the mobility edge and obtains the correct critical disorder strength for Anderson localization in 3D.Comment: 5 Pages, 4 Figures and Supplementary Material include

    Metal-Insulator-Transition in a Weakly interacting Disordered Electron System

    Get PDF
    The interplay of interactions and disorder is studied using the Anderson-Hubbard model within the typical medium dynamical cluster approximation. Treating the interacting, non-local cluster self-energy (Σc[G~](i,j≠i)\Sigma_c[{\cal \tilde{G}}](i,j\neq i)) up to second order in the perturbation expansion of interactions, U2U^2, with a systematic incorporation of non-local spatial correlations and diagonal disorder, we explore the initial effects of electron interactions (UU) in three dimensions. We find that the critical disorder strength (WcUW_c^U), required to localize all states, increases with increasing UU; implying that the metallic phase is stabilized by interactions. Using our results, we predict a soft pseudogap at the intermediate WW close to WcUW_c^U and demonstrate that the mobility edge (ωϵ\omega_\epsilon) is preserved as long as the chemical potential, μ\mu, is at or beyond the mobility edge energy.Comment: 10 Pages, 8 Figures with Supplementary materials include
    • …
    corecore