87 research outputs found

    Simulation numérique d'un système antigivre pour ailes d'avions

    Get PDF
    Code de givrage -- Système antigivre -- Film mince -- Rugosités de surface -- Modèle mathématique -- Écoulement externe -- Eau de ruissellement -- Région solide -- Région d'écoulement interne -- Méthodes numériques -- Écoulement potentiel et trajectoires -- Couche limite et région d'eau de ruissellement -- Région solide -- Coefficient de convection interne -- Validations préliminaires -- Film liquide -- Couche limite sur plaque plane -- Cylindre -- Résultats et discussion -- Système antigivre électrique -- Simulation d'un système antigivre à air chaud

    Parametric Studies of Flat Plate Trajectories Using VIC and Penalization

    Get PDF
    International audienceFlying debris is generated in several situations: when a roof is exposed to a storm, when ice accretes on rotating wind turbines, or during inflight aircraft deicing. Four dimensionless parameters play a role in the motion of flying debris. The goal of the present paper is to investigate the relative importance of four dimensionless parameters: the Reynolds number, the Froude number, the Tachikawa number, and the mass moment of inertia parameters. Flying debris trajectories are computed with a fluid-solid interaction model formulated for an incompressible 2D laminar flow. The rigid moving solid effects are modelled in the Navier-Stokes equations using penalization. A VIC scheme is used to solve the flow equations. The aerodynamic forces and moments are used to compute the acceleration and the velocity of the solid. A database of 64 trajectories is built using a two-level full factorial design for the four factors. The dispersion of the plate position at a given horizontal position decreases with the Froude number. Moreover, the Tachikawa number has a significant effect on the median plate position

    Numerical simulation of ice accretion using Messinger-based approach: effects of surface roughness

    Get PDF
    International audienceIn-flight icing on an aircraft's surface can be a major hazard in aeronautics's safety. Numerical simulations of ice accretion on aircraft is a common procedure to anticipate ice formation when flying in a supercooled water droplets cloud. Numerical simulations bring a better understanding of ice accretion phenomena, performance degradations and lead to even more efficient thermal de-icing systems' designs. Such simulations imply modelling the phase change of water and the mass and energy transfers. The Messinger model developed in the 1950′ is still used today as a reliable basis for new models development. This model estimates the ice growth rate using mass and energy balances coupled to a runback water flow. The main parameter introduced with this approach is the freezing fraction, denoting the fraction of incoming water that effectively freezes on the airfoil. The objective of the present work is to model an ice accretion on an airfoil using a Messinger-based approach and to make a sensitivity analysis of roughness models on the ice shape. The test case will be performed on a 2D NACA0012 airfoil. A typical test case on a NACA0012 airfoil under icing conditions will be run and confronted with the literature for verification prior to further investigations. Ice blocks profiles comparisons will highlight the differences implied by the choice of the roughness correction, which impact the heat transfer coefficient

    Flexible trans-jacket inscription of fiber Bragg gratings for directional distributed sensing

    Get PDF
    An array of 18 FBGs spectrally distributed over 70 nm was written in a polyimide-coated fiber, with a single uniform phase-mask, by applying strain on the fiber prior to exposition. This flexible method will be used to develop directional sensor for distributed sensing based on a hybrid glasspolymer multicore fiber

    A numerical and experimental investigation of the convective heat transfer on a small helicopter rotor test setup

    Get PDF
    In-flight icing affects helicopter performance, limits its operations, and reduces safety. The convective heat transfer is an important parameter in numerical icing simulations and state-of-the-art icing/de-icing codes utilize important computing resources when calculating it. The BEMT–RHT and UVLM–RHT offer low- and medium-fidelity approaches to estimate the rotor heat transfer (RHT). They are based on a coupling between Blade element momentum theory (BEMT) or unsteady vortex lattice method (UVLM), and a CFD-determined heat transfer correlation. The latter relates the Frossling number (Fr) to the Reynolds number (Re) and effective angle of attack (αEff). In a series of experiments carried out at the Anti-icing Materials International Laboratory (AMIL), this paper serves as a proof of concept of the proposed correlations. The objective is to propose correlations for the experimentally measured rotor heat transfer data. Specifically, the Frx is correlated with the Re and αEff in a similar form as the proposed CFD-based correlations. A fixed-wing setup is first used as a preliminary step to verify the heat transfer measurements of the icing wind tunnel (IWT). Tests are conducted at α = 0°, for a range of 4.76 × 105 ≤ Re ≤ 1.36 × 106 and at 10 non-dimensional surface wrap locations − 0.62 ≤ (S/c) ≤ + 0.87. Later, a rotor setup is used to build the novel heat transfer correlation, tests are conducted at two pitch angles ((θ) = 0° and 6°) for a range of rotor speeds (500 RPM ≤ (Ω) ≤ 1500 RPM), three different radial positions ((r/R) = 0.6, 0.75 and 0.95), and 0 ≤ S/c ≤ + 0.58. Results indicate that the fixed-wing Frx at the stagnation point was in the range of literature experimental data, and within 8% of fully turbulent CFD simulations. The FrAvg also agrees with CFD predictions, with an average discrepancy of 1.4%. For the rotor, the Ω caused a similar increase of Frx for the tests at θ = 0° and those at θ = 6°. Moreover, the Frx behavior changed significantly with r/R, suggesting the αEff had a significant effect on the Frx. Finally, the rotor data are first correlated with Rem (at each S/c) for θ = 0° to establish the correlation parameters, and a term for the αEff is then added to also account for the tests at θ = 6°. The correlations fit the data with an error between 2.1% and 14%, thus justifying the use of a coupled approach for the BEMT–RHT and UVLM–RHT

    Predicting rotor heat transfer using the viscous blade element momentum theory and unsteady vortex lattice method

    Get PDF
    Calculating the unsteady convective heat transfer on helicopter blades is the first step in the prediction of ice accretion and the design of ice-protection systems. Simulations using Computational Fluid Dynamics (CFD) successfully model the complex aerodynamics of rotors as well as the heat transfer on blade surfaces, but for a conceptual design, faster calculation methods may be favorable. In the recent literature, classical methods such as the blade element momentum theory (BEMT) and the unsteady vortex lattice method (UVLM) were used to produce higher fidelity aerodynamic results by coupling them to viscous CFD databases. The novelty of this research originates from the introduction of an added layer of the coupling technique to predict rotor blade heat transfer using the BEMT and UVLM. The new approach implements the viscous coupling of the two methods from one hand and introduces a link to a new airfoil CFD-determined heat transfer correlation. This way, the convective heat transfer on ice-clean rotor blades is estimated while benefiting from the viscous extension of the BEMT and UVLM. The CFD heat transfer prediction is verified using existing correlations for a flat plate test case. Thrust predictions by the implemented UVLM and BEMT agree within 2% and 80% compared to experimental data. Tip vortex locations by the UVLM are predicted within 90% but fail in extreme ground effect. The end results present as an estimate of the heat transfer for a typical lightweight helicopter tail rotor for four test cases in hover, ground effect, axial, and forward flight

    Traveling by bus instead of car on urban major roads: Safety benefits for vehicle occupants, pedestrians, and cyclists

    Get PDF
    Some studies have estimated fatality and injury rates for bus occupants, but data was aggregated at the country level and made no distinction between bus types. Also, injured pedestrians and cyclists, as a result of bus travel, were overlooked. We compared injury rates for car and city bus occupants on specific urban major roads, as well as the cyclist and pedestrian injuries associated with car and bus travel. We selected ten bus routes along major urban arterials (in Montreal, Canada). Passenger-kilometers traveled were estimated from vehicle counts at intersections (2002-2010) and from bus passenger counts (2008). Police accident reports (2001-2010) provided injury data for all modes. Injury rates associated with car and bus travel were calculated for vehicle occupants, pedestrians, and cyclists. Injury rate ratios were also computed. The safety benefits of bus travel, defined as the number of vehicle occupant, cyclist, and pedestrian injuries saved, were estimated for each route. Overall, for all ten routes, the ratio between car and bus occupant injury rates is 3.7 (95% CI [3.4, 4.0]). The rates of pedestrian and cyclist injuries per hundred million passenger-kilometers are also significantly greater for car travel than that for bus travel: 4.1 (95% CI [3.5, 4.9]) times greater for pedestrian injuries; 5.3 (95% CI [3.8, 7.6]) times greater for cyclist injuries. Similar results were observed for fatally and severely injured vehicle occupants, cyclists, and pedestrians. At the route level, the safety benefits of bus travel increase with the difference in injury rate associated with car and bus travel but also with the amount of passenger-kilometers by bus. Results show that city bus is a safer mode than car, for vehicle occupants but also for cyclists and pedestrians traveling along these bus routes. The safety benefits of bus travel greatly vary across urban routes; this spatial variation is most likely linked to environmental factors. Understanding the safety benefits of public transit for specific transport routes is likely to provide valuable information for mobilizing city and transportation planners

    An experimental investigation of the convective heat transfer on a small helicopter rotor with anti-icing and de-icing test setups

    Get PDF
    Successful icing/de-icing simulations for rotorcraft require a good prediction of the convective heat transfer on the blade’s surface. Rotorcraft icing is an unwanted phenomenon that is known to cause flight cancelations, loss of rotor performance and severe vibrations that may have disastrous and deadly consequences. Following a series of experiments carried out at the Anti-icing Materials International Laboratory (AMIL), this paper provides heat transfer measurements on heated rotor blades, under both the anti-icing and de-icing modes in terms of the Nusselt Number (Nu). The objective is to develop correlations for the Nu in the presence of (1) an ice layer on the blades (NuIce) and (2) liquid water content (LWC) in the freestream with no ice (NuWet). For the sake of comparison, the NuWet and the NuIce are compared to heat transfer values in dry runs (NuDry). Measurements are reported on the nose of the blade-leading edge, for three rotor speeds (Ω) = 500, 900 and 1000 RPM; a pitch angle (θ) = 6°; and three different radial positions (r/R), r/R = 0.6, 0.75 and 0.95. The de-icing tests are performed twice, once for a glaze ice accretion and another time for rime ice. Results indicate that the NuDry and the NuWet directly increased with V∝, r/R or Ω, mainly due to an increase in the Reynolds number (Re). Measurements indicate that the NuWet to NuDry ratio was always larger than 1 as a direct result of the water spray addition. NuIce behavior was different and was largely affected by the ice thickness (tice) on the blade. However, the ice acted as insulation on the blade surface and the NuIce to NuDry ratio was always less than 1, thus minimizing the effect of convection. Four correlations are then proposed for the NuDry, the NuWet and the NuIce, with an average error between 3.61% and 12.41%. The NuDry correlation satisfies what is expected from heat transfer near the leading edge of an airfoil, where the NuDry correlates well with Re0.52
    corecore