238 research outputs found
Public health implications of 1990 air toxics concentrations across the United States.
Occupational and toxicological studies have demonstrated adverse health effects from exposure to toxic air contaminants. Data on outdoor levels of toxic air contaminants have not been available for most communities in the United States, making it difficult to assess the potential for adverse human health effects from general population exposures. Emissions data from stationary and mobile sources are used in an atmospheric dispersion model to estimate outdoor concentrations of 148 toxic air contaminants for each of the 60,803 census tracts in the contiguous United States for 1990. Outdoor concentrations of air toxics were compared to previously defined benchmark concentrations for cancer and noncancer health effects. Benchmark concentrations are based on standard toxicological references and represent air toxic levels above which health risks may occur. The number of benchmark concentrations exceeded by modeled concentrations ranged from 8 to 32 per census tract, with a mean of 14. Estimated concentrations of benzene, formaldehyde, and 1,3-butadiene were greater than cancer benchmark concentrations in over 90% of the census tracts. Approximately 10% of all census tracts had estimated concentrations of one or more carcinogenic HAPs greater than a 1-in-10,000 risk level. Twenty-two pollutants with chronic toxicity benchmark concentrations had modeled concentrations in excess of these benchmarks, and approximately 200 census tracts had a modeled concentration 100 times the benchmark for at least one of these pollutants. This comprehensive assessment of air toxics concentrations across the United States indicates hazardous air pollutants may pose a potential public health problem
Separate and Unequal: Residential Segregation and Estimated Cancer Risks Associated with Ambient Air Toxics in U.S. Metropolitan Areas
This study examines links between racial residential segregation and estimated ambient air toxics exposures and their associated cancer risks using modeled concentration estimates from the U.S. Environmental Protection Agency’s National Air Toxics Assessment. We combined pollutant concentration estimates with potencies to calculate cancer risks by census tract for 309 metropolitan areas in the United States. This information was combined with socioeconomic status (SES) measures from the 1990 Census. Estimated cancer risks associated with ambient air toxics were highest in tracts located in metropolitan areas that were highly segregated. Disparities between racial/ethnic groups were also wider in more segregated metropolitan areas. Multivariate modeling showed that, after controlling for tract-level SES measures, increasing segregation amplified the cancer risks associated with ambient air toxics for all racial groups combined [highly segregated areas: relative cancer risk (RCR) = 1.04; 95% confidence interval (CI), 1.01–107; extremely segregated areas: RCR = 1.32; 95% CI, 1.28–1.36]. This segregation effect was strongest for Hispanics (highly segregated areas: RCR = 1.09; 95% CI, 1.01–1.17; extremely segregated areas: RCR = 1.74; 95% CI, 1.61–1.88) and weaker among whites (highly segregated areas: RCR = 1.04; 95% CI, 1.01–1.08; extremely segregated areas: RCR = 1.28; 95% CI, 1.24–1.33), African Americans (highly segregated areas: RCR = 1.09; 95% CI, 0.98–1.21; extremely segregated areas: RCR = 1.38; 95% CI, 1.24–1.53), and Asians (highly segregated areas: RCR = 1.10; 95% CI, 0.97–1.24; extremely segregated areas: RCR = 1.32; 95% CI, 1.16–1.51). Results suggest that disparities associated with ambient air toxics are affected by segregation and that these exposures may have health significance for populations across racial lines
Recommended from our members
Associations between historical residential redlining and current age-adjusted rates of emergency department visits due to asthma across eight cities in California: an ecological study.
BackgroundAsthma disproportionately affects communities of colour in the USA, but the underlying factors for this remain poorly understood. In this study, we assess the role of historical redlining as outlined in security maps created by the Home Owners' Loan Corporation (HOLC), the discriminatory practice of categorising neighbourhoods on the basis of perceived mortgage investment risk, on the burden of asthma in these neighbourhoods.MethodsWe did an ecological study of HOLC risk grades and asthma exacerbations in California using the security maps available for the following eight cities: Fresno, Los Angeles, Oakland, Sacramento, San Diego, San Jose, San Francisco, and Stockton. Each census tract was categorised into one of four risk levels (A, B, C, or D) on the basis of the location of population-weighted centroids on security maps, with the worst risk level (D) indicating historical redlining. We obtained census tract-level rates of emergency department visits due to asthma from CalEnviroScreen 3.0. We assessed the relationship between risk grade and log-transformed asthma visit rates between 2011 and 2013 using ordinary least squares regression. We included potential confounding variables from the 2010 Census and CalEnviroScreen 3.0: diesel exhaust particle emissions, PM2·5, and percent of the population living below 2 times the federal poverty level. We also built random intercept and slope models to assess city-level variation in the relationship between redlining and asthma.FindingsIn the 1431 census tracts assessed (64 [4·5%] grade A, 241 [16·8%] grade B, 719 [50·2%] grade C, and 407 [28·4%] grade D), the proportion of the population that was non-Hispanic black and Hispanic, the percentage of the population living in poverty, and diesel exhaust particle emissions all significantly increased as security map risk grade worsened (p<0·0001). The median age-adjusted rates of emergency department visits due to asthma were 2·4 times higher in census tracts that were previously redlined (median 63·5 [IQR 34·3] visits per 10 000 residents per year [2011-13]) than in tracts at the lowest risk level (26·5 [18·4]). In adjusted models, redlined census tracts were associated with a relative risk of 1·39 (95% CI 1·21-1·57) in rates of emergency department visits due to asthma compared with that of lowest-risk census tracts.InterpretationHistorically redlined census tracts have significantly higher rates of emergency department visits due to asthma, suggesting that this discriminatory practice might be contributing to racial and ethnic asthma health disparities.FundingNational Heart Lung Blood Institute
Recommended from our members
Exposure to Perfluoroalkyl Substances in a Cohort of Women Firefighters and Office Workers in San Francisco.
Studies of firefighters have shown increased exposures to carcinogenic compounds and elevated rates of certain cancers compared to the general population, yet this research has focused almost exclusively on men. To address this gap, the Women Firefighters Biomonitoring Collaborative created a biological sample archive and analyzed levels of perfluoroalkyl substances (PFAS) among women firefighters (N = 86) and office workers (N = 84) in San Francisco. Serum samples were collected and analyzed using liquid chromatography-tandem mass spectrometry (LC-MS/MS) to measure and compare PFAS levels between firefighters and office workers. 7 of 12 PFAS congeners were detected in the least 70% of the study population, and 4 congeners were detected in 100% of participants. In regression models comparing PFAS levels by occupation and adjusting for potential confounders, firefighters had higher geometric mean concentrations of PFAS compared to office workers PFHxS (2.22 (95% CI = 1.55, 3.18)), PFUnDA (1.83 (95% CI = 0.97, 3.45)), and PFNA (1.26 (95% CI = 1.01, 1.58)). Among firefighters, occupational position predicted exposure-firefighters and officers had higher PFNA, PFOA, PFDA, and PFUnDA levels compared to drivers. Women firefighters are exposed to higher levels of some PFAS compared to office workers, suggesting that some of these exposures may be occupationally related
Recommended from our members
Integrating Exposure Knowledge and Serum Suspect Screening as a New Approach to Biomonitoring: An Application in Firefighters and Office Workers.
Firefighters (FF) are exposed to recognized and probable carcinogens, yet there are few studies of chemical exposures and associated health concerns in women FFs, such as breast cancer. Biomonitoring often requires a priori selection of compounds to be measured, and so, it may not detect relevant, lesser known, exposures. The Women FFs Biomonitoring Collaborative (WFBC) created a biological sample archive and conducted a general suspect screen (GSS) to address this data gap. Using liquid chromatography-quadrupole time-of-flight tandem mass spectrometry, we sought to identify candidate chemicals of interest in serum samples from 83 women FFs and 79 women office workers (OW) in San Francisco. We identified chemical peaks by matching accurate mass from serum samples against a custom chemical database of 722 slightly polar phenolic and acidic compounds, including many of relevance to firefighting or breast cancer etiology. We then selected tentatively identified chemicals for confirmation based on the following criteria: (1) detection frequency or peak area differences between OW and FF; (2) evidence of mammary carcinogenicity, estrogenicity, or genotoxicity; and (3) not currently measured in large biomonitoring studies. We detected 620 chemicals that matched 300 molecular formulas in the WFBC database, including phthalate metabolites, phosphate flame-retardant metabolites, phenols, pesticides, nitro and nitroso compounds, and per- and polyfluoroalkyl substances. Of the 20 suspect chemicals selected for validation, 8 were confirmed-including two alkylphenols, ethyl paraben, BPF, PFOSAA, benzophenone-3, benzyl p-hydroxybenzoate, and triphenyl phosphate-by running a matrix spike of the reference standards and using m/z, retention time, and the confirmation of at least two fragment ions as criteria for matching. GSS provides a powerful high-throughput approach to identify and prioritize novel chemicals for biomonitoring and health studies
Institutional review board challenges related to community-based participatory research on human exposure to environmental toxins: A case study
<p>Abstract</p> <p>Background</p> <p>We report on the challenges of obtaining Institutional Review Board (IRB) coverage for a community-based participatory research (CBPR) environmental justice project, which involved reporting biomonitoring and household exposure results to participants, and included lay participation in research.</p> <p>Methods</p> <p>We draw on our experiences guiding a multi-partner CBPR project through university and state Institutional Review Board reviews, and other CBPR colleagues' written accounts and conference presentations and discussions. We also interviewed academics involved in CBPR to learn of their challenges with Institutional Review Boards.</p> <p>Results</p> <p>We found that Institutional Review Boards are generally unfamiliar with CBPR, reluctant to oversee community partners, and resistant to ongoing researcher-participant interaction. Institutional Review Boards sometimes unintentionally violate the very principles of beneficence and justice which they are supposed to uphold. For example, some Institutional Review Boards refuse to allow report-back of individual data to participants, which contradicts the CBPR principles that guide a growing number of projects. This causes significant delays and may divert research and dissemination efforts. Our extensive education of our university Institutional Review Board convinced them to provide human subjects protection coverage for two community-based organizations in our partnership.</p> <p>Conclusions</p> <p>IRBs and funders should develop clear, routine review guidelines that respect the unique qualities of CBPR, while researchers and community partners can educate IRB staff and board members about the objectives, ethical frameworks, and research methods of CBPR. These strategies can better protect research participants from the harm of unnecessary delays and exclusion from the research process, while facilitating the ethical communication of study results to participants and communities.</p
Measuring the Success of Community Science: The Northern California Household Exposure Study
Background: Environmental health research involving community participation has increased substantially since the National Institute of Environmental Health Sciences (NIEHS) environmental justice and community-based participatory research (CBPR) partnerships began in the mid-1990s. The goals of these partnerships are to inform and empower better decisions about exposures, foster trust, and generate scientific knowledge to reduce environmental health disparities in low-income, minority communities. Peer-reviewed publication and clinical health outcomes alone are inadequate criteria to judge the success of projects in meeting these goals; therefore, new strategies for evaluating success are needed
Vulnerability as a Function of Individual and Group Resources in Cumulative Risk Assessment
BACKGROUND: The field of risk assessment has focused on protecting the health of individual people or populations of wildlife from single risks, mostly from chemical exposure. The U.S. Environmental Protection Agency recently began to address multiple risks to communities in the “Framework for Cumulative Risk Assessment” [EPA/630/P02/001F. Washington DC:Risk Assessment Forum, U.S. Environmental Protection Agency (2003)]. Simultaneously, several reports concluded that some individuals and groups are more vulnerable to environmental risks than the general population. However, vulnerability has received little specific attention in the risk assessment literature. OBJECTIVE: Our objective is to examine the issue of vulnerability in cumulative risk assessment and present a conceptual framework rather than a comprehensive review of the literature. In this article we consider similarities between ecologic and human communities and the factors that make communities vulnerable to environmental risks. DISCUSSION: The literature provides substantial evidence on single environmental factors and simple conditions that increase vulnerability or reduce resilience for humans and ecologic systems. This observation is especially true for individual people and populations of wildlife. Little research directly addresses the topic of vulnerability in cumulative risk situations, especially at the community level. The community level of organization has not been adequately considered as an end point in either human or ecologic risk assessment. Furthermore, current information on human risk does not completely explain the level of response in cumulative risk conditions. Ecologic risk situations are similarly more complex and unpredictable for cases of cumulative risk. CONCLUSIONS: Psychosocial conditions and responses are the principal missing element for humans. We propose a model for including psychologic and social factors as an integral component of cumulative risk assessment
Identifying Vulnerable Populations through an Examination of the Association Between Multipollutant Profiles and Poverty
Recently, concerns have centered on how to expand knowledge on the limited science related to the cumulative impact of multiple air pollution exposures and the potential vulnerability of poor communities to their toxic effects. The highly intercorrelated nature of exposures makes application of standard regression-based methods to these questions problematic due to well-known issues related to multicollinearity. Our paper addresses these problems by using, as its basic unit of inference, a profile consisting of a pattern of exposure values. These profiles are grouped into clusters and associated with a deprivation outcome. Specifically, we examine how profiles of NO(2)-, PM(2.5)-, and diesel- (road and off-road) based exposures are associated with the number of individuals living under poverty in census tracts (CT's) in Los Angeles County. Results indicate that higher levels of pollutants are generally associated with higher poverty counts, though the association is complex and nonlinear. Our approach is set in the Bayesian framework, and as such the entire model can be fit as a unit using modern Bayesian multilevel modeling techniques via the freely available WinBUGS software package, (1) though we have used custom-written C++ code (validated with WinBUGS) to improve computational speed. The modeling approach proposed thus goes beyond single-pollutant models in that it allows us to determine the association between entire multipollutant profiles of exposures with poverty levels in small geographic areas in Los Angeles County
Toxic ignorance and right-to-know in biomonitoring results communication: a survey of scientists and study participants
<p>Abstract</p> <p>Background</p> <p>Exposure assessment has shifted from pollutant monitoring in air, soil, and water toward personal exposure measurements and biomonitoring. This trend along with the paucity of health effect data for many of the pollutants studied raise ethical and scientific challenges for reporting results to study participants.</p> <p>Methods</p> <p>We interviewed 26 individuals involved in biomonitoring studies, including academic scientists, scientists from environmental advocacy organizations, IRB officials, and study participants; observed meetings where stakeholders discussed these issues; and reviewed the relevant literature to assess emerging ethical, scientific, and policy debates about personal exposure assessment and biomonitoring, including public demand for information on the human health effects of chemical body burdens.</p> <p>Results</p> <p>We identify three frameworks for report-back in personal exposure studies: clinical ethics; community-based participatory research; and citizen science 'data judo.' The first approach emphasizes reporting results only when the health significance of exposures is known, while the latter two represent new communication strategies where study participants play a role in interpreting, disseminating, and leveraging results to promote community health. We identify five critical areas to consider in planning future biomonitoring studies.</p> <p>Conclusion</p> <p>Public deliberation about communication in personal exposure assessment research suggests that new forms of community-based research ethics and participatory scientific practice are emerging.</p
- …