73 research outputs found

    The biosynthesis by brain microsomes of cerebrosides containing nonhydroxy fatty acids,

    Full text link
    Incubation of microsomes from mouse brain with UDP-gal, a long-chain base, and 14C-fatty acyl-CoA resulted in formation of NFA-cerebroside labeled in the fatty acid residue. The rate of synthesis was ten times that of the system lacking UDP-gal or long chain base. The incubation system also formed NFA-ceramide, at a much higher rate. Stearoyl- and lignoceroyl-CoA were much more effective in forming ceramide and cerebroside than palmitoyl- and oleoyl-CoA, a correlation which suggests that ceramide is an intermediate in cerebroside biosynthesis.When NFA-ceramide, together with a phospholipid mixture, was incubated with labeled UDP-gal, NFA-cerebroside was formed. Utilization of the exogenous ceramide was demonstrated by a number of Chromatographie procedures. Under the same conditions, but with labeled UDP-glc, the corresponding glucose-containing cerebroside was formed, at a somewhat higher rate.The organic synthesis of labeled lignoceric acid and lignoceroyl -sphingosine is described. Also described is a simplified method for large-scale preparation of purified -sphingosine. The labeled ceramide was utilized by the microsomes for the formation of galactosyl lignoceroyl sphingosine.Under a variety of conditions the microsomes failed to convert psychosine and labeled acyl-CoA to cerebroside.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/32654/1/0000019.pd

    Tissue-specific coordinate regulation of enzymes of cholesterol biosynthesis: Sciatic nerve versus liver

    Get PDF
    Exposure of weanling rats to a diet containing the element tellurium results in specific inhibition of squalene epoxidase, an obligate enzyme in cholesterol biosynthesis. Liver responds to the resulting intracellular sterol deficit by up-regulating, in parallel and to the same extent, expression of mRNA for squalene epoxidase and for HMG-CoA reductase, the major rate-limiting enzyme in the pathway. This increased mRNA expression, coupled with additional translational and posttranslational activation of the pathway allows normal levels of cholesterol synthesis in liver despite tellurium-induced inhibition of squalene epoxidase. The response to tellurium challenge in sciatic nerve is very different. In this tissue, cholesterol synthesis is prominent because of the large amount of cholesterol required for synthesis and maintenance of myelin. Although nerve shows an initial (at 1 day) up-regulation of mRNA expression for both enzymes in response to tellurium exposure, this is followed quickly by parallel down-regulation of both enzymes, in concert with down-regulation of mRNA expression for myelin proteins. We suggest that the tellurium-induced deficit in sterols leads to a coordinate down-regulation of synthesis of myelin components. The initial early up-regulation of cholesterol biosynthesis in sciatic nerve due to the cholesterol deficit is countered by down-regulation which is coordinated with overall control of the program of myelin assembly. This tissue-specific control of cholesterol synthesis in sciatic nerve is a point of vulnerability to toxicants, and may be related to the need for coordinate synthesis of all components of myelin

    Translocations as Experiments in the Ecological Resilience of an Asocial Mega-Herbivore

    Get PDF
    Species translocations are remarkable experiments in evolutionary ecology, and increasingly critical to biodiversity conservation. Elaborate socio-ecological hypotheses for translocation success, based on theoretical fitness relationships, are untested and lead to complex uncertainty rather than parsimonious solutions. We used an extraordinary 89 reintroduction and 102 restocking events releasing 682 black rhinoceros (Diceros bicornis) to 81 reserves in southern Africa (1981–2005) to test the influence of interacting socio-ecological and individual characters on post-release survival. We predicted that the socio-ecological context should feature more prominently after restocking than reintroduction because released rhinoceros interact with resident conspecifics. Instead, an interaction between release cohort size and habitat quality explained reintroduction success but only individuals' ages explained restocking outcomes. Achieving translocation success for many species may not be as complicated as theory suggests. Black rhino, and similarly asocial generalist herbivores without substantial predators, are likely to be resilient to ecological challenges and robust candidates for crisis management in a changing world

    Obeticholic acid for the treatment of non-alcoholic steatohepatitis: interim analysis from a multicentre, randomised, placebo-controlled phase 3 trial

    Get PDF
    Background Non-alcoholic steatohepatitis (NASH) is a common type of chronic liver disease that can lead to cirrhosis. Obeticholic acid, a farnesoid X receptor agonist, has been shown to improve the histological features of NASH. Here we report results from a planned interim analysis of an ongoing, phase 3 study of obeticholic acid for NASH. Methods In this multicentre, randomised, double-blind, placebo-controlled study, adult patients with definite NASH,non-alcoholic fatty liver disease (NAFLD) activity score of at least 4, and fibrosis stages F2–F3, or F1 with at least oneaccompanying comorbidity, were randomly assigned using an interactive web response system in a 1:1:1 ratio to receive oral placebo, obeticholic acid 10 mg, or obeticholic acid 25 mg daily. Patients were excluded if cirrhosis, other chronic liver disease, elevated alcohol consumption, or confounding conditions were present. The primary endpointsfor the month-18 interim analysis were fibrosis improvement (≥1 stage) with no worsening of NASH, or NASH resolution with no worsening of fibrosis, with the study considered successful if either primary endpoint was met. Primary analyses were done by intention to treat, in patients with fibrosis stage F2–F3 who received at least one dose of treatment and reached, or would have reached, the month 18 visit by the prespecified interim analysis cutoff date. The study also evaluated other histological and biochemical markers of NASH and fibrosis, and safety. This study is ongoing, and registered with ClinicalTrials.gov, NCT02548351, and EudraCT, 20150-025601-6. Findings Between Dec 9, 2015, and Oct 26, 2018, 1968 patients with stage F1–F3 fibrosis were enrolled and received at least one dose of study treatment; 931 patients with stage F2–F3 fibrosis were included in the primary analysis (311 in the placebo group, 312 in the obeticholic acid 10 mg group, and 308 in the obeticholic acid 25 mg group). The fibrosis improvement endpoint was achieved by 37 (12%) patients in the placebo group, 55 (18%) in the obeticholic acid 10 mg group (p=0·045), and 71 (23%) in the obeticholic acid 25 mg group (p=0·0002). The NASH resolution endpoint was not met (25 [8%] patients in the placebo group, 35 [11%] in the obeticholic acid 10 mg group [p=0·18], and 36 [12%] in the obeticholic acid 25 mg group [p=0·13]). In the safety population (1968 patients with fibrosis stages F1–F3), the most common adverse event was pruritus (123 [19%] in the placebo group, 183 [28%] in the obeticholic acid 10 mg group, and 336 [51%] in the obeticholic acid 25 mg group); incidence was generally mild to moderate in severity. The overall safety profile was similar to that in previous studies, and incidence of serious adverse events was similar across treatment groups (75 [11%] patients in the placebo group, 72 [11%] in the obeticholic acid 10 mg group, and 93 [14%] in the obeticholic acid 25 mg group). Interpretation Obeticholic acid 25 mg significantly improved fibrosis and key components of NASH disease activity among patients with NASH. The results from this planned interim analysis show clinically significant histological improvement that is reasonably likely to predict clinical benefit. This study is ongoing to assess clinical outcomes

    Axonal transport of the mitochondria-specific lipid, diphosphatidylglycerol, in the rat visual system

    Get PDF
    ABSTRACT Rats 24 d old were injected intraocularly with [2- 3 H]glycerol and ["S]methionine and killed 1 h-60 d later. seS label in protein and 3H label in total phospholipid and a mitochondria-specific lipid, diphosphatidylglycerol (DPG), were determined in optic pathway structures (retinas, optic nerves, optic tracts, lateral geniculate bodies, and superior colliculi). Incorporation of label into retinal protein and phospholipid was nearly maximal 1 h postinjection, after which the label appeared in successive optic pathway structures. Based on the time difference between the arrival of label in the optic tract and superior colliculus, it was calculated that protein and phospholipid were transported at a rate of about 400 mm/d, and DPG at about half this rate. Transported labeled phospholipid and DPG, which initially comprised 3-5 % of the lipid label, continued to accumulate in the visual structures for 6-8 d postinjection. The distribution of transported material among the optic pathway structures as a function of time differed markedly for different labeled macromolecules. Rapidly transported proteins distributed preferentially to the nerve endings (superior colliculus and lateral geniculate). Total phospholipid quickly established a pattern of comparable labeling of axon (optic nerve an

    Acute aquatic toxicity of organic solvents modeled by QSARs.

    No full text
    The authors also gratefully acknowledge L. Geoffroy, L. Chancerelle and P. Pandard from the INERIS Institut.International audienceTo limit in vivo experiments, the use of quantitative structure-activity relationships (QSARs) is advocated by REACH regulation to predict the required fish, invertebrate, and algae EC50 for chemical registration. The aim of this work was to develop reliable QSARs in order to model both invertebrate and algae EC50 for organic solvents, regardless of the mechanism of toxic action involved. EC50 represents the concentration producing the 50 % immobilization of invertebrates or the 50 % growth inhibition of algae. The dataset was composed of 122 organic solvents chemically heterogeneous which were characterized by their invertebrate and/or algae EC50. These solvents were described by physico-chemical descriptors and quantum theoretical parameters calculated via density functional theory. QSAR models were developed by multiple linear regression using the ordinary least squares method and descriptor selection was performed by the Kubinyi function. Invertebrate EC50 was well-described with LogP, dielectric constant, surface tension, and minimal atomic Mulliken charges while algae EC50 of organic solvents (except amines) was predicted with LogP and LUMO energy. To evaluate robustness and predictive performance of the QSARs developed, several strategies have been used to select solvent training sets (random, EC50-based selection and a space-filling design) and both internal and external validations were performed
    • …
    corecore