1,539 research outputs found
Comparing Feature Detectors: A bias in the repeatability criteria, and how to correct it
Most computer vision application rely on algorithms finding local
correspondences between different images. These algorithms detect and compare
stable local invariant descriptors centered at scale-invariant keypoints.
Because of the importance of the problem, new keypoint detectors and
descriptors are constantly being proposed, each one claiming to perform better
(or to be complementary) to the preceding ones. This raises the question of a
fair comparison between very diverse methods. This evaluation has been mainly
based on a repeatability criterion of the keypoints under a series of image
perturbations (blur, illumination, noise, rotations, homotheties, homographies,
etc). In this paper, we argue that the classic repeatability criterion is
biased towards algorithms producing redundant overlapped detections. To
compensate this bias, we propose a variant of the repeatability rate taking
into account the descriptors overlap. We apply this variant to revisit the
popular benchmark by Mikolajczyk et al., on classic and new feature detectors.
Experimental evidence shows that the hierarchy of these feature detectors is
severely disrupted by the amended comparator.Comment: Fixed typo in affiliation
A survey of exemplar-based texture synthesis
Exemplar-based texture synthesis is the process of generating, from an input
sample, new texture images of arbitrary size and which are perceptually
equivalent to the sample. The two main approaches are statistics-based methods
and patch re-arrangement methods. In the first class, a texture is
characterized by a statistical signature; then, a random sampling conditioned
to this signature produces genuinely different texture images. The second class
boils down to a clever "copy-paste" procedure, which stitches together large
regions of the sample. Hybrid methods try to combine ideas from both approaches
to avoid their hurdles. The recent approaches using convolutional neural
networks fit to this classification, some being statistical and others
performing patch re-arrangement in the feature space. They produce impressive
synthesis on various kinds of textures. Nevertheless, we found that most real
textures are organized at multiple scales, with global structures revealed at
coarse scales and highly varying details at finer ones. Thus, when confronted
with large natural images of textures the results of state-of-the-art methods
degrade rapidly, and the problem of modeling them remains wide open.Comment: v2: Added comments and typos fixes. New section added to describe
FRAME. New method presented: CNNMR
Introduction to the Special Issue on Partial Differential Equations and Geometry-Driven Diffusion in Image Processing and Analysis
©1998 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or distribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.DOI: 10.1109/TIP.1998.66117
- …