37 research outputs found

    Absence of functional TolC protein causes increased stress response gene expression in Sinorhizobium meliloti

    Get PDF
    The TolC protein from Sinorhizobium meliloti has previously been demonstrated to be required for establishing successful biological nitrogen fixation symbiosis with Medicago sativa. It is also needed in protein and exopolysaccharide secretion and for protection against osmotic and oxidative stresses. Here, the transcriptional profile of free-living S. meliloti 1021 tolC mutant is described as a step toward understanding its role in the physiology of the cell

    The Tyrosine Kinase BceF and the Phosphotyrosine Phosphatase BceD of Burkholderia contaminans Are Required for Efficient Invasion and Epithelial Disruption of a Cystic Fibrosis Lung Epithelial Cell Line

    Get PDF
    Bacterial tyrosine kinases and their cognate protein tyrosine phosphatases are best known for regulating the biosynthesis of polysaccharides. Moreover, their roles in the stress response, DNA metabolism, cell division, and virulence have also been documented. The aim of this study was to investigate the pathogenicity and potential mechanisms of virulence dependent on the tyrosine kinase BceF and phosphotyrosine phosphatase BceD of the cystic fibrosis opportunistic pathogen Burkholderia contaminans IST408. The insertion mutants bceD::Tp and bceF::Tp showed similar attenuation of adhesion and invasion of the cystic fibrosis lung epithelial cell line CFBE41o- compared to the parental strain B. contaminans IST408. In the absence of bceD or bceF genes, B. contaminans also showed a reduction in the ability to translocate across polarized epithelial cell monolayers, demonstrated by a higher transepithelial electrical resistance, reduced flux of fluorescein isothiocyanate-labeled bovine serum albumin, and higher levels of tight junction proteins ZO-1, occludin, and claudin-1 present in monolayers exposed to these bacterial mutants. Furthermore, bceD::Tp and bceF::Tp mutants induced lower levels of interleukin-6 (IL-6) and IL-8 release than the parental strain. In conclusion, although the mechanisms of pathogenicity dependent on BceD and BceF are not understood, these proteins contribute to the virulence of Burkholderia by enhancement of cell attachment and invasion, disruption of epithelial integrity, and modulation of the proinflammatory response

    The regulator LdhR and the d-lactate dehydrogenase LdhA of Burkholderia multivorans play a role in carbon overflow and in planktonic cellular aggregates formation

    Get PDF
    This paper version is the accepted manuscript posted online 21 July 2017. It has peer-review. This publication hasn't any creative commons license associated. The deposited article version contains attached the supplementary materials within the pdf.LysR-type transcriptional regulators (LTTR) are the most commonly found regulators in Burkholderia cepacia complex, comprising opportunistic pathogens causing chronic respiratory infections in cystic fibrosis (CF) patients. Despite LTTRs being global regulators of pathogenicity in several bacteria, few have been characterized in Burkholderia Here, we showed that gene ldhR of B. multivorans encoding a LTTR is co-transcribed with ldhA encoding a d-lactate dehydrogenase, and evaluate their implication in virulence traits like exopolysaccharide (EPS) synthesis and biofilm formation. Comparison of wild-type (WT) and its isogenic ΔldhR mutant grown in medium with 2% d-glucose revealed a negative impact on EPS biosynthesis and on cells' viability in the presence of LdhR. Loss of viability in WT cells was caused by intracellular acidification as consequence of cumulative organic acids secretion including d-lactate, this last one absent from the ΔldhR mutant supernatant. Furthermore, LdhR is implicated in the formation of planktonic cellular aggregates. WT cell aggregates reached 1000 μm after 24 hours in liquid cultures; in contrast to ΔldhR mutant aggregates that never grew more than 60 μm. Overexpression of d-lactate dehydrogenase LdhA in the ΔldhR mutant partially restored formed aggregates size, suggesting a role for fermentation inside aggregates. Similar results were obtained for surface-attached biofilms, with WT cells producing more biofilm. A systematic evaluation of planktonic aggregates in Burkholderia CF clinical isolates showed aggregates in 40 out of 74. As CF patients' lung environment is microaerophilic and bacteria are found as free aggregates/biofilms, LdhR and LdhA might have central roles in adaptation to this environment.IMPORTANCE Cystic fibrosis patients often suffer from chronic respiratory infections caused by several microorganisms. Among them are the Burkholderia cepacia complex bacteria which cause progressive deterioration of lung function and, in some patients, might develop into fatal necrotizing pneumoniae with bacteremia, known as "cepacia syndrome". Burkholderia pathogenesis is multifactorial since they express several virulence factors, form biofilms, and are highly resistant to antimicrobial compounds, making their eradication from the CF patients' airways very difficult. As Burkholderia is commonly found in the CF lungs in the form of cell aggregates and biofilms, the need to investigate the mechanisms of cellular aggregation is obvious. In this study we demonstrate the importance of a d-lactate dehydrogenase and a regulator, in regulating carbon overflow, cellular aggregates and surface-attached biofilm formation. This not only enhances our understanding of Burkholderia pathogenesis, but can also lead to the development of drugs against these proteins to circumvent biofilm formation.Instituto Gulbenkian de Ciência (Gene Expression Unit); Programa Operacional 833 Regional de Lisboa 2020 grant: (LISBOA-01-0145-FEDER-007317); Fundação para a Ciência e a Tecnologia grants: (PTDC/QUI-BIQ/118260/2010, UID/BIO/04565/2013, SFRH/BPD/86475/2012).info:eu-repo/semantics/acceptedVersio

    Survival of allochthonous bacteria in still mineral water bottled in polyvinyl chloride (PVC) and glass

    Get PDF
    The mortality of Escherichia coli, Enterobacter cloacae, Klebsiella pneumoniae and Pseudomonas aeruginosa, based on the culturability of these bacteria, was assessed in non-carbonated mineral water, bottled in polyvinyl chloride (PVC) containing the indigenous flora, sterile mineral water bottled in PVC, sterile mineral water in glass containers, and sterile tap water in glass containers. There was a general decrease in the culturability of these organisms in the four test waters, except that Ps. aeruginosa grew in sterile tap water. Escherichia coli and Kl. pneumoniae had the highest mortality rates under the conditions tested, while Ent. cloacae had a very low and constant mortality rate that would have resulted in the persistence of this organism in mineral water for a long period of time. After a sharp initial decrease in culturability, Ps. aeruginosa also had a very low mortality rate in mineral water bottled in PVC

    Differences in Virulence Between Legionella pneumophila Isolates From Human and Non-human Sources Determined in Galleria mellonella Infection Model

    No full text
    Legionella pneumophila is a ubiquitous bacterium in freshwater environments and in many man-made water systems capable of inducing pneumonia in humans. Despite its ubiquitous character most studies on L. pneumophila virulence focused on clinical strains and isolates from man-made environments, so little is known about the nature and extent of virulence variation in strains isolated from natural environments. It has been established that clinical isolates are less diverse than man-made and natural environmental strains, suggesting that only a subset of environmental isolates is specially adapted to infect humans. In this work we intended to determine if unrelated L. pneumophila strains, isolated from different environments and with distinct virulence-related genetic backgrounds, displayed differences in virulence, using the Wax Moth Galleria mellonella infection model. We found that all tested strains were pathogenic in G. mellonella, regardless of their origin. Indeed, a panoply of virulence-related phenotypes was observed sustaining the existence of significant differences on the ability of L. pneumophila strains to induce disease. Taken together our results suggest that the occurrence of human infection is not related with the increased capability of some strains to induce disease since we also found a concentration threshold above which L. pneumophila strains are equally able to cause disease. In addition, no link could be established between the sequence-type (ST) and L. pneumophila pathogenicity. We envision that in man-made water distribution systems environmental filtering selection and biotic competition acts structuring L. pneumophila populations by selecting more resilient and adapted strains that can rise to high concentration if no control measures are implemented. Therefore, public health strategies based on the sequence based typing (STB) scheme analysis should take into account that the major disease-associated clones of L. pneumophila were not related with higher virulence in G. mellonella infection model, and that potential variability of virulence-related phenotypes was found within the same ST

    Draft genome sequences of two Burkholderia multivorans sequential isolates from a chronic lung infection of a cystic fibrosis patient

    No full text
    Burkholderia multivorans belongs to the Burkholderia cepacia complex, which comprises opportunistic pathogens infecting cystic fibrosis (CF) patients. Here, we report the genome sequences and annotations of two sequential B. multivorans clinical isolates (D2095 and D2214) displaying different traits. The differences in the genomic contents of these isolates may provide clues regarding the evolution of B. multivorans within the airways of a CF patient.This work was supported by FEDER and the Fundação para a Ciência e a Tecnologia, Portugal (project PTDC/QUI-BIQ/118260/2010 to L.M.M.and PEsT-OE/EQB/LA0023/2011) and a post doctoral Grant to I.N.S.info:eu-repo/semantics/publishedVersio

    The Sinorhizobium meliloti EmrR Regulator Is Required for Efficient Colonization of Medicago sativa Root Nodules

    No full text
    The nitrogen-fixing bacterium Sinorhizobium meliloti must adapt to diverse conditions encountered during its symbiosis with leguminous plants. We characterized a new symbiotically relevant gene, emrR (SMc03169), whose product belongs to the TetR family of repressors and is divergently transcribed from emrAB genes encoding a putative major facilitator superfamily-type efflux pump. An emrR deletion mutant produced more succinoglycan, displayed increased cell-wall permeability, and exhibited higher tolerance to heat shock. It also showed lower tolerance to acidic conditions, a reduced production of siderophores, and lower motility and biofilm formation. The simultaneous deletion of emrA and emrR genes restored the mentioned traits to the wild-type phenotype, except for survival under heat shock, which was lower than that displayed by the wild-type strain. Furthermore, the ΔemrR mutant as well as the double ΔemrAR mutant was impaired in symbiosis with Medicago sativa; it formed fewer nodules and competed poorly with the wild-type strain for nodule colonization. Expression profiling of the ΔemrR mutant showed decreased expression of genes involved in Nod-factor and rhizobactin biosynthesis and in stress responses. Expression of genes directing the biosynthesis of succinoglycan and other polysaccharides were increased. EmrR may therefore be involved in a regulatory network targeting membrane and cell wall modifications in preparation for colonization of root hairs during symbiosis.FEDER; Fundação para a Ciência e a Tecnologia doctoral grant

    Stress conditions triggering mucoid morphotype variation in Burkholderia species and effect on virulence in Galleria mellonella and biofilm formation in vitro.

    Get PDF
    Burkholderia cepacia complex (Bcc) bacteria are opportunistic pathogens causing chronic respiratory infections particularly among cystic fibrosis patients. During these chronic infections, mucoid-to-nonmucoid morphotype variation occurs, with the two morphotypes exhibiting different phenotypic properties. Here we show that in vitro, the mucoid clinical isolate Burkholderia multivorans D2095 gives rise to stable nonmucoid variants in response to prolonged stationary phase, presence of antibiotics, and osmotic and oxidative stresses. Furthermore, in vitro colony morphotype variation within other members of the Burkholderia genus occurred in Bcc and non-Bcc strains, irrespectively of their clinical or environmental origin. Survival to starvation and iron limitation was comparable for the mucoid parental isolate and the respective nonmucoid variant, while susceptibility to antibiotics and to oxidative stress was increased in the nonmucoid variants. Acute infection of Galleria mellonella larvae showed that, in general, the nonmucoid variants were less virulent than the respective parental mucoid isolate, suggesting a role for the exopolysaccharide in virulence. In addition, most of the tested nonmucoid variants produced more biofilm biomass than their respective mucoid parental isolate. As biofilms are often associated with increased persistence of pathogens in the CF lungs and are an indicative of different cell-to-cell interactions, it is possible that the nonmucoid variants are better adapted to persist in this host environment
    corecore