5 research outputs found

    T follicular helper cells promote a beneficial gut ecosystem for host metabolic homeostasis by sensing microbiota-derived extracellular ATP

    Get PDF
    The ATP-gated ionotropic P2X7 receptor regulates T follicular helper (Tfh) cell abundance in the Peyer’s patches (PPs) of the small intestine; deletion of P2rx7, encoding for P2X7, in Tfh cells results in enhanced IgA secretion and binding to commensal bacteria. Here, we show that Tfh cell activity is important for generating a diverse bacterial community in the gut and that sensing of microbiota-derived extracellular ATP via P2X7 promotes the generation of a proficient gut ecosystem for metabolic homeostasis. The results of this study indicate that Tfh cells play a role in host-microbiota mutualism beyond protecting the intestinal mucosa by induction of affinity-matured IgA and suggest that extracellular ATP constitutes an inter-kingdom signaling molecule important for selecting a beneficial microbial community for the host via P2X7-mediated regulation of B cell help

    Protocol to evaluate the impact of murine MCT1-deficient CD8+ T cells on adipogenesis

    No full text
    Summary: The infiltration of activated T cells, such as CD8+ effector, in metabolic tissues plays a crucial role for the initiation and propagation of obesity-induced inflammation. Given the pivotal role of lactate transporter monocarboxylate transporter 1 (MCT1) in immune cell activation, we present a protocol for the isolation and activation of CD8+ T lymphocytes selectively lacking MCT1. We describe steps for the induction of adipocyte differentiation, CD8+ T isolation and activation, and adipocyte-CD8+ T cell co-culture. We then detail qPCR analysis on differentiated adipocytes.For complete details on the use and execution of this protocol, please refer to Macchi et al.1 : Publisher’s note: Undertaking any experimental protocol requires adherence to local institutional guidelines for laboratory safety and ethics

    Dendritic cell marker Clec4a4 deficiency limits atherosclerosis progression

    No full text
    Background and aims: Atherogenesis results from altered lipid metabolism and impaired immune response. Emerging evidence has suggested that dendritic cells (DCs) participate to atherosclerosis-related immune response, but their impact is scarcely characterized. Clec4a4 or DCIR2 (Dendritic cell immunoreceptor 2) is a C-type lectin receptor, mainly expressed by CD8α− DCs, able to modulate T cell immunity. However, whether this DC subset could play a role in the atherogenesis is still poorly understood. Thus, the aim of this study is to investigate whether the absence of Clec4a4 could affect atherosclerosis-related immune response and atherosclerosis itself. Methods: Dcir2−/− Ldlr−/− and Ldlr−/− mice were fed a standard diet or cholesterol-enriched diet for 12 weeks. Subsequently, the profile of circulating and lymph nodes-resident immune cells was investigated together with the analysis of plasma lipid levels and atherosclerotic plaque extension in the aorta. Results: Here, we show that Clec4a4 expression is downregulated under hypercholesterolemia and its deficiency in Ldlr−/− mice results in the reduction of atherosclerotic plaque formation, together with altered lipid metabolism and impaired myeloid immune cell distribution. Conclusions: Our findings suggest a pro-atherosclerotic role of Clec4a4 in experimental atherosclerosis

    Mannose Receptor Deficiency Impacts Bone Marrow and Circulating Immune Cells during High Fat Diet Induced Obesity

    No full text
    The mannose receptor C-type 1 (Mrc1) is a C-type lectin receptor expressed on the immune cells and sinusoidal endothelial cells (ECs) of several tissues, including the bone marrow (BM). Parallel to systemic metabolic alterations and hematopoietic cell proliferation, high-fat diet (HFD) feeding increases the expression of Mrc1 in sinusoidal ECs, thus calling for the investigation of its role in bone marrow cell reprogramming and the metabolic profile during obesity. Mrc1−/− mice and wild-type (WT) littermates were fed an HFD (45% Kcal/diet) for 20 weeks. Weight gain was monitored during the diet regimen and glucose and insulin tolerance were assessed. Extensive flow cytometry profiling, histological, and proteomic analyses were performed. After HFD feeding, Mrc1−/− mice presented impaired medullary hematopoiesis with reduced myeloid progenitors and mature cells in parallel with an increase in BM adipocytes compared to controls. Accordingly, circulating levels of neutrophils and pro-inflammatory monocytes decreased in Mrc1−/− mice together with reduced infiltration of macrophages in the visceral adipose tissue and the liver compared to controls. Liver histological profiling coupled with untargeted proteomic analysis revealed that Mrc1−/− mice presented decreased liver steatosis and the downregulation of proteins belonging to pathways involved in liver dysfunction. This profile was reflected by improved glucose and insulin response and reduced weight gain during HFD feeding in Mrc1−/− mice compared to controls. Our data show that during HFD feeding, mannose receptor deficiency impacts BM and circulating immune cell subsets, which is associated with reduced systemic inflammation and resistance to obesity development

    Genetically determined hypercholesterolaemia results into premature leucocyte telomere length shortening and reduced haematopoietic precursors

    No full text
    Leucocyte telomere length (LTL) shortening is a marker of cellular senescence and associates with increased risk of cardiovascular disease (CVD). A number of cardiovascular risk factors affect LTL, but the correlation between elevated LDL cholesterol (LDL-C) and shorter LTL is debated: in small cohorts including subjects with a clinical diagnosis of familial hypercholesterolaemia (FH). We assessed the relationship between LDL-C and LTL in subjects with genetic familial hypercholesterolaemia (HeFH) compared to those with clinically diagnosed, but not genetically confirmed FH (CD-FH), and normocholesterolaemic subjects
    corecore