356 research outputs found
Local strong maximal monotonicity and full stability for parametric variational systems
The paper introduces and characterizes new notions of Lipschitzian and
H\"olderian full stability of solutions to general parametric variational
systems described via partial subdifferential and normal cone mappings acting
in Hilbert spaces. These notions, postulated certain quantitative properties of
single-valued localizations of solution maps, are closely related to local
strong maximal monotonicity of associated set-valued mappings. Based on
advanced tools of variational analysis and generalized differentiation, we
derive verifiable characterizations of the local strong maximal monotonicity
and full stability notions under consideration via some positive-definiteness
conditions involving second-order constructions of variational analysis. The
general results obtained are specified for important classes of variational
inequalities and variational conditions in both finite and infinite dimensions
Second-order subdifferential calculus with applications to tilt stability in optimization
The paper concerns the second-order generalized differentiation theory of
variational analysis and new applications of this theory to some problems of
constrained optimization in finitedimensional spaces. The main attention is
paid to the so-called (full and partial) second-order subdifferentials of
extended-real-valued functions, which are dual-type constructions generated by
coderivatives of frst-order subdifferential mappings. We develop an extended
second-order subdifferential calculus and analyze the basic second-order
qualification condition ensuring the fulfillment of the principal secondorder
chain rule for strongly and fully amenable compositions. The calculus results
obtained in this way and computing the second-order subdifferentials for
piecewise linear-quadratic functions and their major specifications are applied
then to the study of tilt stability of local minimizers for important classes
of problems in constrained optimization that include, in particular, problems
of nonlinear programming and certain classes of extended nonlinear programs
described in composite terms
Constraint Qualifications and Optimality Conditions for Nonconvex Semi-Infinite and Infinite Programs
The paper concerns the study of new classes of nonlinear and nonconvex
optimization problems of the so-called infinite programming that are generally
defined on infinite-dimensional spaces of decision variables and contain
infinitely many of equality and inequality constraints with arbitrary (may not
be compact) index sets. These problems reduce to semi-infinite programs in the
case of finite-dimensional spaces of decision variables. We extend the
classical Mangasarian-Fromovitz and Farkas-Minkowski constraint qualifications
to such infinite and semi-infinite programs. The new qualification conditions
are used for efficient computing the appropriate normal cones to sets of
feasible solutions for these programs by employing advanced tools of
variational analysis and generalized differentiation. In the further
development we derive first-order necessary optimality conditions for infinite
and semi-infinite programs, which are new in both finite-dimensional and
infinite-dimensional settings.Comment: 28 page
Generalized Newton's Method based on Graphical Derivatives
This paper concerns developing a numerical method of the Newton type to solve
systems of nonlinear equations described by nonsmooth continuous functions. We
propose and justify a new generalized Newton algorithm based on graphical
derivatives, which have never been used to derive a Newton-type method for
solving nonsmooth equations. Based on advanced techniques of variational
analysis and generalized differentiation, we establish the well-posedness of
the algorithm, its local superlinear convergence, and its global convergence of
the Kantorovich type. Our convergence results hold with no semismoothness
assumption, which is illustrated by examples. The algorithm and main results
obtained in the paper are compared with well-recognized semismooth and
-differentiable versions of Newton's method for nonsmooth Lipschitzian
equations
Discrete Approximations of a Controlled Sweeping Process
The paper is devoted to the study of a new class of optimal control problems
governed by the classical Moreau sweeping process with the new feature that the polyhe-
dral moving set is not fixed while controlled by time-dependent functions. The dynamics of
such problems is described by dissipative non-Lipschitzian differential inclusions with state
constraints of equality and inequality types. It makes challenging and difficult their anal-
ysis and optimization. In this paper we establish some existence results for the sweeping
process under consideration and develop the method of discrete approximations that allows
us to strongly approximate, in the W^{1,2} topology, optimal solutions of the continuous-type
sweeping process by their discrete counterparts
Quantitative Stability and Optimality Conditions in Convex Semi-Infinite and Infinite Programming
This paper concerns parameterized convex infinite (or semi-infinite)
inequality systems whose decision variables run over general
infinite-dimensional Banach (resp. finite-dimensional) spaces and that are
indexed by an arbitrary fixed set T . Parameter perturbations on the right-hand
side of the inequalities are measurable and bounded, and thus the natural
parameter space is . Based on advanced variational analysis, we
derive a precise formula for computing the exact Lipschitzian bound of the
feasible solution map, which involves only the system data, and then show that
this exact bound agrees with the coderivative norm of the aforementioned
mapping. On one hand, in this way we extend to the convex setting the results
of [4] developed in the linear framework under the boundedness assumption on
the system coefficients. On the other hand, in the case when the decision space
is reflexive, we succeed to remove this boundedness assumption in the general
convex case, establishing therefore results new even for linear infinite and
semi-infinite systems. The last part of the paper provides verifiable necessary
optimality conditions for infinite and semi-infinite programs with convex
inequality constraints and general nonsmooth and nonconvex objectives. In this
way we extend the corresponding results of [5] obtained for programs with
linear infinite inequality constraints
- âŠ