356 research outputs found

    Local strong maximal monotonicity and full stability for parametric variational systems

    Full text link
    The paper introduces and characterizes new notions of Lipschitzian and H\"olderian full stability of solutions to general parametric variational systems described via partial subdifferential and normal cone mappings acting in Hilbert spaces. These notions, postulated certain quantitative properties of single-valued localizations of solution maps, are closely related to local strong maximal monotonicity of associated set-valued mappings. Based on advanced tools of variational analysis and generalized differentiation, we derive verifiable characterizations of the local strong maximal monotonicity and full stability notions under consideration via some positive-definiteness conditions involving second-order constructions of variational analysis. The general results obtained are specified for important classes of variational inequalities and variational conditions in both finite and infinite dimensions

    Second-order subdifferential calculus with applications to tilt stability in optimization

    Get PDF
    The paper concerns the second-order generalized differentiation theory of variational analysis and new applications of this theory to some problems of constrained optimization in finitedimensional spaces. The main attention is paid to the so-called (full and partial) second-order subdifferentials of extended-real-valued functions, which are dual-type constructions generated by coderivatives of frst-order subdifferential mappings. We develop an extended second-order subdifferential calculus and analyze the basic second-order qualification condition ensuring the fulfillment of the principal secondorder chain rule for strongly and fully amenable compositions. The calculus results obtained in this way and computing the second-order subdifferentials for piecewise linear-quadratic functions and their major specifications are applied then to the study of tilt stability of local minimizers for important classes of problems in constrained optimization that include, in particular, problems of nonlinear programming and certain classes of extended nonlinear programs described in composite terms

    Constraint Qualifications and Optimality Conditions for Nonconvex Semi-Infinite and Infinite Programs

    Get PDF
    The paper concerns the study of new classes of nonlinear and nonconvex optimization problems of the so-called infinite programming that are generally defined on infinite-dimensional spaces of decision variables and contain infinitely many of equality and inequality constraints with arbitrary (may not be compact) index sets. These problems reduce to semi-infinite programs in the case of finite-dimensional spaces of decision variables. We extend the classical Mangasarian-Fromovitz and Farkas-Minkowski constraint qualifications to such infinite and semi-infinite programs. The new qualification conditions are used for efficient computing the appropriate normal cones to sets of feasible solutions for these programs by employing advanced tools of variational analysis and generalized differentiation. In the further development we derive first-order necessary optimality conditions for infinite and semi-infinite programs, which are new in both finite-dimensional and infinite-dimensional settings.Comment: 28 page

    Generalized Newton's Method based on Graphical Derivatives

    Get PDF
    This paper concerns developing a numerical method of the Newton type to solve systems of nonlinear equations described by nonsmooth continuous functions. We propose and justify a new generalized Newton algorithm based on graphical derivatives, which have never been used to derive a Newton-type method for solving nonsmooth equations. Based on advanced techniques of variational analysis and generalized differentiation, we establish the well-posedness of the algorithm, its local superlinear convergence, and its global convergence of the Kantorovich type. Our convergence results hold with no semismoothness assumption, which is illustrated by examples. The algorithm and main results obtained in the paper are compared with well-recognized semismooth and BB-differentiable versions of Newton's method for nonsmooth Lipschitzian equations

    Discrete Approximations of a Controlled Sweeping Process

    Get PDF
    The paper is devoted to the study of a new class of optimal control problems governed by the classical Moreau sweeping process with the new feature that the polyhe- dral moving set is not fixed while controlled by time-dependent functions. The dynamics of such problems is described by dissipative non-Lipschitzian differential inclusions with state constraints of equality and inequality types. It makes challenging and difficult their anal- ysis and optimization. In this paper we establish some existence results for the sweeping process under consideration and develop the method of discrete approximations that allows us to strongly approximate, in the W^{1,2} topology, optimal solutions of the continuous-type sweeping process by their discrete counterparts

    Quantitative Stability and Optimality Conditions in Convex Semi-Infinite and Infinite Programming

    Get PDF
    This paper concerns parameterized convex infinite (or semi-infinite) inequality systems whose decision variables run over general infinite-dimensional Banach (resp. finite-dimensional) spaces and that are indexed by an arbitrary fixed set T . Parameter perturbations on the right-hand side of the inequalities are measurable and bounded, and thus the natural parameter space is l∞(T)l_{\infty}(T). Based on advanced variational analysis, we derive a precise formula for computing the exact Lipschitzian bound of the feasible solution map, which involves only the system data, and then show that this exact bound agrees with the coderivative norm of the aforementioned mapping. On one hand, in this way we extend to the convex setting the results of [4] developed in the linear framework under the boundedness assumption on the system coefficients. On the other hand, in the case when the decision space is reflexive, we succeed to remove this boundedness assumption in the general convex case, establishing therefore results new even for linear infinite and semi-infinite systems. The last part of the paper provides verifiable necessary optimality conditions for infinite and semi-infinite programs with convex inequality constraints and general nonsmooth and nonconvex objectives. In this way we extend the corresponding results of [5] obtained for programs with linear infinite inequality constraints
    • 

    corecore