24 research outputs found

    The GCN2 kinase is required for activating autophagy in response to indispensable amino acid deficiencies

    Get PDF
    ORGANIZING COMMITTEEChairs: Didier Attaix - Lydie Combaret - Daniel TaillandierDaniel Béchet - Agnès Claustre - Cécile Coudy-Gandilhon - Christiane Deval - Gérard Donadille - Cécile PolgeSCIENTIFIC COMMITTEEDidier Attaix - Lydie Combaret - Alfred L. Goldberg - Ron Hay - Germana Meroni - Marco Sandri - Daniel Taillandier - Keiji Tanaka - Simon S. WingPoster Session 3 - AutophagyImbalances in dietary amino acid (AA) supply, including deficits in one or more indispensable amino acids (IAA), are stressful conditions for the organism that needs to modulate a number of physiological functions to adapt to this situation. In particular, since there is no system dedicated for storing AA in the body, the release of free AA occurs by proteolysis at the expense of functional proteins, notably in the liver by up-regulating autophagy. This process can be rapidly mobilized within the cell in response to a number of stresses, by post-translational regulations of autophagy-related proteins already present in the cytosol. The protein kinase GCN2 is activated upon IAA scarcity in order to promote cell adaptation to a nutritional stress condition. In response to IAA limitation, GCN2 couples the accumulation of uncharged transfer RNAs to the phosphorylation of eIF2a on serine 51. By this mean, GCN2 diminishes the overall protein synthesis rate, while simultaneously activating a gene expression program mediated by the translational upregulation of the transcription factor ATF4. Our recent work has shown that the GCN2/p-eIF2a/ATF4 signaling pathway plays an essential role in the induction of transcription of a number of autophagy-related genes involved in the maintenance of the autophagic process in response to an IAA deficiency (B’chir et al., 2013). In the present study we sought to determine whether GCN2 could play a role in regulating the early stages of autophagy. The most upstream complex for triggering the autophagic process (initiation complex) is notably composed of the ULK kinase and the ATG13 bridging protein, and is classically viewed to be controlled by mTORC1. Indeed, the activity of the autophagy initiation complex has been shown to be modulated according to AA availability by the activity of mTORC1, which phosphorylates different sites in ULK. Here, by using a GCN2 knock-out mouse model we investigated the role of GCN2 in the upregulation of autophagy in the first hour of an IAA deficiency. Our results show that 1) GCN2 is required for upregulating liver autophagy in response to an IAA-deficient diet, which is confirmed in cell culture model; 2) this early activation of the autophagic process does not require the transcription factor ATF4; 3) moreover, while this effect can occur without concomitant inhibition of mTORC1 activity, our results suggest that ULK/ATG13 couple is involved in the GCN2-dependent activation of autophagy. Our results demonstrate that in the particular model of an IAA deficiency GCN2 plays a preponderant role in triggering the adaptive autophagy upregulation, a mechanism which can operate without concomitant inhibition of mTORC1 activit

    Deriving the number of jobs in proximity services from the number of inhabitants in French rural municipalities

    Get PDF
    We use a minimum requirement approach to derive the number of jobs in proximity services per inhabitant in French rural municipalities. We first classify the municipalities according to their time distance to the municipality where the inhabitants go the most frequently to get services (called MFM). For each set corresponding to a range of time distance to MFM, we perform a quantile regression estimating the minimum number of service jobs per inhabitant, that we interpret as an estimation of the number of proximity jobs per inhabitant. We observe that the minimum number of service jobs per inhabitant is smaller in small municipalities. Moreover, for municipalities of similar sizes, when the distance to the MFM increases, we find that the number of jobs of proximity services per inhabitant increases.Comment: 6 pages, 5 figure

    The structure of the bovine cathepsin B gene : Genetic variability in the 3'untranslated region

    No full text
    International audienc

    Phospho-proteomic approach to identify new targets of leucine deprivation in muscle cells

    No full text
    International audienceThe aim of this study was to optimize a protocol that allows identifying changes at the phosphorylation level of specific proteins in response to cell stimulation by leucine starvation. To make possible the identification of differentially phosphorylated proteins by the combination of two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), we prepared fraction enriched in phosphoproteins. For that purpose, we adapted the immobilized metal affinity chromatography (IMAC) technique to make it compatible with 2D-PAGE. On the whole, this procedure allowed identifying regulated targets of leucine deprivation: molecular chaperones glucose-regulated protein 58 kDa (GRP58) and BiP (GRP78), RNA helicase DEAD box polypeptide 3, and eukaryotic translation initiation factor 4B (eIF4B)

    Identification of Cathepsin L as a differentially-expressed message associated with skeletal muscle wasting

    No full text
    *INRA Centre de Theix (FRA) Diffusion du document : INRA Centre de Theix (FRA)International audienc
    corecore