12 research outputs found

    The Biomechanics of Gender Difference and Whiplash Injury: Designing Safer Car Seats for Women

    Get PDF
    Female car users are reported to have a higher incidence of soft tissue neck injuries in low speed rear-end collisions than males, and they apparently take longer to recover. This paper addresses the whiplash problem by developing a biomechanical FEM (Finite Element Method) model of the 50th and the 5th percentile female cervical spines, based on the earlier published male model created at the Nottingham Trent University. This model relies on grafting a detailed biomechanical model of the neck and head onto a standard HYBRID III dummy model. The overall philosophy of the investigation was to see if females responded essentially as scaled down males from the perspective of rear end collisions. It was found that detailed responses varied significantly with gender and it became clear that females cannot be modelled as scaled-down males, thus confirming the need for separate male and female biomechanical models and a revision of car test programmes and regulations which are currently based on the average male. Further investigation is needed to quantify the gender differences and then recommendations can be made for changes to the design of car seats and head restraints in order to reduce the risk of soft tissue injury to women

    Recombinant expression and characterisation of the oxygen-sensitive 2-enoate reductase from Clostridium sporogenes

    Get PDF
    ‘Ene’-reductases have attracted significant attention for the preparation of chemical intermediates and biologically active products. To date, research has been focussed primarily on Old Yellow Enzyme-like proteins, due to their ease of handling, whereas 2-enoate reductases from clostridia have received much less attention, because of their oxygen sensitivity and a lack of suitable expression systems. A hypothetical 2-enoate reductase gene, fldZ, was identified in Clostridium sporogenes DSM 795. The encoded protein shares a high degree of homology to clostridial FMN- and FAD-dependent 2-enoate reductases, including the cinnamic acid reductase proposed to be involved in amino acid metabolism in proteolytic clostridia. The gene was cloned and overexpressed in Escherichia coli. Successful expression depended on the use of strictly anaerobic conditions for both growth and enzyme preparation, since FldZ was oxygen-sensitive. The enzyme reduced aromatic enoates, such as cinnamic acid or p-coumaric acid, but not short chain unsaturated aliphatic acids. The b,b-disubstituted nitroalkene, (E)-1-nitro-2-phenylpropene, was reduced to enantiopure (R)-1-nitro-2-phenylpropane with a yield of 90 %. By contrast, the a,b-disubstituted nitroalkene, (E)-2-nitro-1-phenylpropene, was reduced with a moderate yield of 56% and poor enantioselectivity (16% ee for (S)-2-nitro-1-phenylpropane). The availability of an expression system for this recombinant clostridial 2-enoate reductase will facilitate future characterisation of this unusual class of ‘ene’-reductases, and expand the biocatalytic toolbox available for enantioselective hydrogenation of carbon-carbon double bonds

    Cancer Biomarker Discovery: The Entropic Hallmark

    Get PDF
    Background: It is a commonly accepted belief that cancer cells modify their transcriptional state during the progression of the disease. We propose that the progression of cancer cells towards malignant phenotypes can be efficiently tracked using high-throughput technologies that follow the gradual changes observed in the gene expression profiles by employing Shannon's mathematical theory of communication. Methods based on Information Theory can then quantify the divergence of cancer cells' transcriptional profiles from those of normally appearing cells of the originating tissues. The relevance of the proposed methods can be evaluated using microarray datasets available in the public domain but the method is in principle applicable to other high-throughput methods. Methodology/Principal Findings: Using melanoma and prostate cancer datasets we illustrate how it is possible to employ Shannon Entropy and the Jensen-Shannon divergence to trace the transcriptional changes progression of the disease. We establish how the variations of these two measures correlate with established biomarkers of cancer progression. The Information Theory measures allow us to identify novel biomarkers for both progressive and relatively more sudden transcriptional changes leading to malignant phenotypes. At the same time, the methodology was able to validate a large number of genes and processes that seem to be implicated in the progression of melanoma and prostate cancer. Conclusions/Significance: We thus present a quantitative guiding rule, a new unifying hallmark of cancer: the cancer cell's transcriptome changes lead to measurable observed transitions of Normalized Shannon Entropy values (as measured by high-throughput technologies). At the same time, tumor cells increment their divergence from the normal tissue profile increasing their disorder via creation of states that we might not directly measure. This unifying hallmark allows, via the the Jensen-Shannon divergence, to identify the arrow of time of the processes from the gene expression profiles, and helps to map the phenotypical and molecular hallmarks of specific cancer subtypes. The deep mathematical basis of the approach allows us to suggest that this principle is, hopefully, of general applicability for other diseases

    Start-stop assembly: a functionally scarless DNA assembly system optimized for metabolic engineering

    No full text
    DNA assembly allows individual DNA constructs or libraries to be assembled quickly and reliably. Most methods are either: (i) Modular, easily scalable and suitable for combinatorial assembly, but leave undesirable ‘scar’ sequences; or (ii) bespoke (non-modular), scarless but less suitable for construction of combinatorial libraries. Both have limitations for metabolic engineering. To overcome this trade-off we devised Start-Stop Assembly, a multi-part, modular DNA assembly method which is both functionally scarless and suitable for combinatorial assembly. Crucially, 3 bp overhangs corresponding to start and stop codons are used to assemble coding sequences into expression units, avoiding scars at sensitive coding sequence boundaries. Building on this concept, a complete DNA assembly framework was designed and implemented, allowing assembly of up to 15 genes from up to 60 parts (or mixtures); monocistronic, operon-based or hybrid configurations; and a new streamlined assembly hierarchy minimising the number of vectors. Only one destination vector is required per organism, reflecting our optimisation of the system for metabolic engineering in diverse organisms. Metabolic engineering using Start-Stop Assembly was demonstrated by combinatorial assembly of carotenoid pathways in E. coli resulting in a wide range of carotenoid production and colony size phenotypes indicating the intended exploration of design space

    The importance of rotational kinematics in pedestrian head to windshield impacts

    No full text
    The objective of the present study was to analyze the effect of angular kinematics on head injury in pedestrian head-to-windshield impacts. Three cases of pedestrian head impacts were simulated with FE head and windshield models. The initial impact conditions were obtained from pedestrian accident reconstructions carried out using multi-body pedestrian and car models. The results from the FE head model were compared with injuries reported in the database. Maximum principal strain was chosen as the injury indicator. After successful head injury predictions, the initial velocities were varied and as a result different peak angular velocities and accelerations were simulated. The results showed that increased peak change in angular velocity caused higher maximal principal strain in the brain and in consequence higher probability of Diffuse Axonal Injury (DAI), and Acute Subdural Haematoma (ASDH). A dramatic, three-fold increase in the strain levels in the brain was found when doubling the impact velocity. This paper presents work performed within the framework of a European Commission 6 th framework project (APROSYS)
    corecore