374 research outputs found

    Spin-Spin Coupling in the Solar System

    Get PDF
    The richness of dynamical behavior exhibited by the rotational states of various solar system objects has driven significant advances in the theoretical understanding of their evolutionary histories. An important factor that determines whether a given object is prone to exhibiting non-trivial rotational evolution is the extent to which such an object can maintain a permanent aspheroidal shape, meaning that exotic behavior is far more common among the small body populations of the solar system. Gravitationally bound binary objects constitute a substantial fraction of asteroidal and TNO populations, comprising systems of triaxial satellites that orbit permanently deformed central bodies. In this work, we explore the rotational evolution of such systems with specific emphasis on quadrupole-quadrupole interactions, and show that for closely orbiting, highly deformed objects, both prograde and retrograde spin-spin resonances naturally arise. Subsequently, we derive capture probabilities for leading order commensurabilities and apply our results to the illustrative examples of (87) Sylvia and (216) Kleopatra asteroid systems. Cumulatively, our results suggest that spin-spin coupling may be consequential for highly elongated, tightly orbiting binary objects.Comment: 9 pages, 4 figures, accepted to Ap

    Dynamical Evolution Induced by Planet Nine

    Get PDF
    The observational census of trans-Neptunian objects with semi-major axes greater than ~250 AU exhibits unexpected orbital structure that is most readily attributed to gravitational perturbations induced by a yet-undetected, massive planet. Although the capacity of this planet to (i) reproduce the observed clustering of distant orbits in physical space, (ii) facilitate dynamical detachment of their perihelia from Neptune, and (iii) excite a population of long-period centaurs to extreme inclinations is well established through numerical experiments, a coherent theoretical description of the dynamical mechanisms responsible for these effects remains elusive. In this work, we characterize the dynamical processes at play, from semi-analytic grounds. We begin by considering a purely secular model of orbital evolution induced by Planet Nine, and show that it is at odds with the ensuing stability of distant objects. Instead, the long-term survival of the clustered population of long-period KBOs is enabled by a web of mean-motion resonances driven by Planet Nine. Then, by taking a compact-form approach to perturbation theory, we show that it is the secular dynamics embedded within these resonances that regulates the orbital confinement and perihelion detachment of distant Kuiper belt objects. Finally, we demonstrate that the onset of large-amplitude oscillations of orbital inclinations is accomplished through capture of low-inclination objects into a high-order secular resonance and identify the specific harmonic that drives the evolution. In light of the developed qualitative understanding of the governing dynamics, we offer an updated interpretation of the current observational dataset within the broader theoretical framework of the Planet Nine hypothesis.Comment: 22 pages, 13 figures, accepted for publication in the Astronomical Journa

    Suppression of type I migration by disk winds

    Full text link
    Planets less massive than Saturn tend to rapidly migrate inward in protoplanetary disks. This is the so-called type I migration. Simulations attempting to reproduce the observed properties of exoplanets show that type I migration needs to be significantly reduced over a wide region of the disk for a long time. However, the mechanism capable of suppressing type I migration over a wide region has remained elusive. The recently found turbulence-driven disk winds offer new possibilities. We investigate the effects of disk winds on the disk profile and type I migration for a range of parameters that describe the strength of disk winds. We also examine the in situ formation of close-in super-Earths in disks that evolve through disk winds. The disk profile, which is regulated by viscous diffusion and disk winds, was derived by solving the diffusion equation. We carried out a number of simulations and plot here migration maps that indicate the type I migration rate. We also performed N-body simulations of the formation of close-in super-Earths from a population of planetesimals and planetary embryos. We define a key parameter, Kw, which determines the ratio of strengths between the viscous diffusion and disk winds. For a wide range of Kw, the type I migration rate is presented in migration maps. These maps show that type I migration is suppressed over the whole close-in region when the effects of disk winds are relatively strong (Kw < 100). From the results of N-body simulations, we see that type I migration is significantly slowed down assuming Kw = 40. We also show that the results of N-body simulations match statistical orbital distributions of close-in super-Earths.Comment: 5 pages, 4 figures, accepted for publication in A&A Letter

    Extreme Secular Excitation of Eccentricity Inside Mean Motion Resonance: Driving Small Bodies into Star-Grazing Orbits by Planetary Perturbations

    Full text link
    It is well known that asteroids and comets fall into the Sun. Metal pollution of white dwarfs and transient spectroscopic signatures of young stars like β\beta-Pic provide growing evidence that extra solar planetesimals can attain extreme orbital eccentricities and fall onto their parent stars. We aim to develop a general, practically implementable, semi-analytical theory of secular eccentricity excitation of small bodies in mean motion resonances with an eccentric planet valid for arbitrary values of the eccentricities and including the short-range force due to General Relativity. Our semi-analytic model for the restricted planar three-body problem does not make use of any series expansion and therefore is valid for any values of eccentricities and semi-major axes ratios. The model is based on the application of the adiabatic principle, which is valid when the precession period of the longitude of pericenter of the planetesimal is much longer than the libration period in the mean motion resonance. This holds down to vanishingly small eccentricities in resonances of order larger than 1. We provide a Mathematica notebook with the implementation of the model allowing direct use to the interested reader. We confirm that the 4:1 mean motion resonance with a moderately eccentric planet is the most powerful one to lift the eccentricity of planetesimals from nearly circular orbits to star-grazing ones. However, if the planet is too eccentric, we find that this resonances becomes unable to pump the planetesimal's eccentricity to very high value. The inclusion of the General Relativity effect imposes a condition on the mass of the planet to drive the planetsimals into star-grazing orbits. For a planetesimal at \sim1 AU around a solar-mass star (or white dwarf), we find a threshold planetary mass of about 17 Earth masses. We finally derive an analytical formula for this critical mass.Comment: In press in Astronomy & Astrophysic

    Formation and Evolution of Planetary Systems in Presence of Highly Inclined Stellar Perturbers

    Get PDF
    The presence of highly eccentric extrasolar planets in binary stellar systems suggests that the Kozai effect has played an important role in shaping their dynamical architectures. However, the formation of planets in inclined binary systems poses a considerable theoretical challenge, as orbital excitation due to the Kozai resonance implies destructive, high-velocity collisions among planetesimals. To resolve the apparent difficulties posed by Kozai resonance, we seek to identify the primary physical processes responsible for inhibiting the action of Kozai cycles in protoplanetary disks. Subsequently, we seek to understand how newly-formed planetary systems transition to their observed, Kozai-dominated dynamical states. We find that theoretical difficulties in planet formation arising from the presence of a distant companion star, posed by the Kozai effect and other secular perturbations, can be overcome by a proper account of gravitational interactions within the protoplanetary disk. In particular, fast apsidal recession induced by disk self-gravity tends to erase the Kozai effect, and ensure that the disk's unwarped, rigid structure is maintained. Subsequently, once a planetary system has formed, the Kozai effect can continue to be wiped out as a result of apsidal precession, arising from planet-planet interactions. However, if such a system undergoes a dynamical instability, its architecture may change in such a way that the Kozai effect becomes operative. The results presented here suggest that planetary formation in highly inclined binary systems is not stalled by perturbations, arising from the stellar companion. Consequently, planet formation in binary stars is probably no different from that around single stars on a qualitative level. Furthermore, it is likely that systems where the Kozai effect operates, underwent a transient phase of dynamical instability in the past.Comment: 9 pages, 7 figures, accepted for publication in Astronomy and Astrophysic

    Separating gas-giant and ice-giant planets by halting pebble accretion

    Full text link
    In the Solar System giant planets come in two flavours: 'gas giants' (Jupiter and Saturn) with massive gas envelopes and 'ice giants' (Uranus and Neptune) with much thinner envelopes around their cores. It is poorly understood how these two classes of planets formed. High solid accretion rates, necessary to form the cores of giant planets within the life-time of protoplanetary discs, heat the envelope and prevent rapid gas contraction onto the core, unless accretion is halted. We find that, in fact, accretion of pebbles (~ cm-sized particles) is self-limiting: when a core becomes massive enough it carves a gap in the pebble disc. This halt in pebble accretion subsequently triggers the rapid collapse of the super-critical gas envelope. As opposed to gas giants, ice giants do not reach this threshold mass and can only bind low-mass envelopes that are highly enriched by water vapour from sublimated icy pebbles. This offers an explanation for the compositional difference between gas giants and ice giants in the Solar System. Furthermore, as opposed to planetesimal-driven accretion scenarios, our model allows core formation and envelope attraction within disc life-times, provided that solids in protoplanetary discs are predominantly in pebbles. Our results imply that the outer regions of planetary systems, where the mass required to halt pebble accretion is large, are dominated by ice giants and that gas-giant exoplanets in wide orbits are enriched by more than 50 Earth masses of solids.Comment: Accepted for publication in Astronomy and Astrophysic
    corecore