418 research outputs found

    Searches for R-parity violating Supersymmetry at LEP 2

    Get PDF
    Searches for pair-production of Supersymmetric particles under the assumption that R-parity is not conserved have been performed using the data collected by ALEPH at centre-of-mass energies of 130-172 GeV. The results for a dominant R-parity violating coupling LLE, for which the observed candidate events in the data are in agreement with the SM expectation, translate into lower limits on the mass of charginos, neutralinos, sleptons, sneutrinos and squarks. We also give preliminary results on the search for charginos, sleptons and sneutrinos via a dominant LQD coupling, and discuss the implications of our results on the R-parity violating interpretations of the recently reported excess of high Q2 events at HERA, and the ALEPH four jet anomaly

    Dynamical Screening and Superconducting State in Intercalated Layered Metallochloronitrides

    Full text link
    An essential property of layered systems is the dynamical nature of the screened Coulomb interaction. Low energy collective modes appear as a consequence of the layering and provide for a superconducting-pairing channel in addition to the electron-phonon induced attractive interaction. We show that taking into account this feature allows to explain the high critical temperatures (Tc~26K) observed in recently discovered intercalated metallochloronitrides. The exchange of acoustic plasmons between carriers leads to a significant enhancement of the superconducting critical temperature that is in agreement with the experimental observations

    A single trapped atom in front of an oscillating mirror

    Full text link
    We investigate the Wigner-Weisskopf decay of a two level atom in front of an oscillating mirror. This work builds on and extends previous theoretical and experimental studies of the effects of a static mirror on spontaneous decay and resonance fluorescence. The spontaneously emitted field is inherently non-stationary due to the time-dependent boundary conditions and in order to study its spectral distribution we employ the operational definition of the spectrum of non-stationary light due to the seminal work by Eberly and Wodkiewicz. We find a rich dependence of this spectrum as well as of the effective decay rates and level shifts on the mirror-atom distance and on the amplitude and frequency of oscillations of the mirror. The results presented here provide the basis for future studies of more complex setups, where the motion of the atom and/or the mirror are included as quantum degrees of freedom.Comment: 10 pages, 12 figures, contribution to the special issue in Optics Communications devoted to Krzysztof Wodkiewicz's memor

    Single spontaneous photon as a coherent beamsplitter for an atomic matterwave

    Full text link
    In spontaneous emission an atom in an excited state undergoes a transition to the ground state and emits a single photon. Associated with the emission is a change of the atomic momentum due to photon recoil. Photon emission can be modified close to surfaces and in cavities. For an ion, localized in front of a mirror, coherence of the emitted resonance fluorescence has been reported. In free space experiments demonstrated that spontaneous emission destroys motional coherence. Here we report on motional coherence created by a single spontaneous emission event close to a mirror surface. The coherence in the free atomic motion is verified by atom interferometry. The photon can be regarded as a beamsplitter for an atomic matterwave and consequently our experiment extends the original recoiling slit Gedanken experiment by Einstein to the case where the slit is in a robust coherent superposition of the two recoils associated with the two paths of the quanta.Comment: main text: 5 pages, 4 figure; supplementary information: 8 pages, 1 figur

    Coherent radiation from neutral molecules moving above a grating

    Get PDF
    We predict and study the quantum-electrodynamical effect of parametric self-induced excitation of a molecule moving above the dielectric or conducting medium with periodic grating. In this case the radiation reaction force modulates the molecular transition frequency which results in a parametric instability of dipole oscillations even from the level of quantum or thermal fluctuations. The present mechanism of instability of electrically neutral molecules is different from that of the well-known Smith-Purcell and transition radiation in which a moving charge and its oscillating image create an oscillating dipole. We show that parametrically excited molecular bunches can produce an easily detectable coherent radiation flux of up to a microwatt.Comment: 4 page

    Electronic Collective Modes and Superconductivity in Layered Conductors

    Full text link
    A distinctive feature of layered conductors is the presence of low-energy electronic collective modes of the conduction electrons. This affects the dynamic screening properties of the Coulomb interaction in a layered material. We study the consequences of the existence of these collective modes for superconductivity. General equations for the superconducting order parameter are derived within the strong-coupling phonon-plasmon scheme that account for the screened Coulomb interaction. Specifically, we calculate the superconducting critical temperature Tc taking into account the full temperature, frequency and wave-vector dependence of the dielectric function. We show that low-energy plasmons may contribute constructively to superconductivity. Three classes of layered superconductors are discussed within our model: metal-intercalated halide nitrides, layered organic materials and high-Tc oxides. In particular, we demonstrate that the plasmon contribution (electronic mechanism) is dominant in the first class of layered materials. The theory shows that the description of so-called ``quasi-two-dimensional superconductors'' cannot be reduced to a purely 2D model, as commonly assumed. While the transport properties are strongly anisotropic, it remains essential to take into account the screened interlayer Coulomb interaction to describe the superconducting state of layered materials.Comment: Final version (minor changes) 14 pages, 6 figure

    Search for supersymmetry with a dominant R-parity violating LQDbar couplings in e+e- collisions at centre-of-mass energies of 130GeV to 172 GeV

    Full text link
    A search for pair-production of supersymmetric particles under the assumption that R-parity is violated via a dominant LQDbar coupling has been performed using the data collected by ALEPH at centre-of-mass energies of 130-172 GeV. The observed candidate events in the data are in agreement with the Standard Model expectation. This result is translated into lower limits on the masses of charginos, neutralinos, sleptons, sneutrinos and squarks. For instance, for m_0=500 GeV/c^2 and tan(beta)=sqrt(2) charginos with masses smaller than 81 GeV/c^2 and neutralinos with masses smaller than 29 GeV/c^2 are excluded at the 95% confidence level for any generation structure of the LQDbar coupling.Comment: 32 pages, 30 figure

    Measurement of the diffractive structure function in deep inelastic scattering at HERA

    Full text link
    This paper presents an analysis of the inclusive properties of diffractive deep inelastic scattering events produced in epep interactions at HERA. The events are characterised by a rapidity gap between the outgoing proton system and the remaining hadronic system. Inclusive distributions are presented and compared with Monte Carlo models for diffractive processes. The data are consistent with models where the pomeron structure function has a hard and a soft contribution. The diffractive structure function is measured as a function of \xpom, the momentum fraction lost by the proton, of β\beta, the momentum fraction of the struck quark with respect to \xpom, and of Q2Q^2. The \xpom dependence is consistent with the form \xpoma where a = 1.30 ± 0.08 (stat)  0.14+ 0.08 (sys)a~=~1.30~\pm~0.08~(stat)~^{+~0.08}_{-~0.14}~(sys) in all bins of β\beta and Q2Q^2. In the measured Q2Q^2 range, the diffractive structure function approximately scales with Q2Q^2 at fixed β\beta. In an Ingelman-Schlein type model, where commonly used pomeron flux factor normalisations are assumed, it is found that the quarks within the pomeron do not saturate the momentum sum rule.Comment: 36 pages, latex, 11 figures appended as uuencoded fil

    Observation of hard scattering in photoproduction events with a large rapidity gap at HERA

    Get PDF
    Events with a large rapidity gap and total transverse energy greater than 5 GeV have been observed in quasi-real photoproduction at HERA with the ZEUS detector. The distribution of these events as a function of the γp\gamma p centre of mass energy is consistent with diffractive scattering. For total transverse energies above 12 GeV, the hadronic final states show predominantly a two-jet structure with each jet having a transverse energy greater than 4 GeV. For the two-jet events, little energy flow is found outside the jets. This observation is consistent with the hard scattering of a quasi-real photon with a colourless object in the proton.Comment: 19 pages, latex, 4 figures appended as uuencoded fil
    corecore