55 research outputs found
Investigating trophic ecology and dietary niche overlap among morphs of Lake Trout in Lake Superior
Four morphs of Lake Trout (Salvelinus namaycush, Walbaum 1792) have been identified in Lake Superior: leans, siscowets, humpers, and redfins. In this comprehensive study, the trophic ecology of Lake Trout morphs were characterized using stomach content, fatty acid, and stable isotope data. Stomach content results indicated a predominately piscivorous diet for leans, siscowets, and redfins, whereas humper diets were comprised of 50% fish and 50% Mysis by mass. Humper and siscowets were most similar in their dietary fatty acid profiles, whereas redfins had the most distinct dietary fatty acid profile. Results from stable isotope analysis revealed some among-morph differences along a pelagic-profundal consumption gradient (34S), but there were no significant differences in trophic position (15N) or basal carbon sources among morphs (13C). Using the recently developed nicheROVER software package, 4-dimensional trophic niches for each morph were quantified using stable isotope ratios (δ13C, δ15N, and δ34S) and fatty acid profiles (30 dietary fatty acids, condensed to one axis). Humpers had the largest 4-dimensional niche regions of all four morphs, and redfins had the smallest. Pairwise probability of overlap among morphs in these four-dimensional niche regions was determined to be < 50% in most cases. Overall, stomach content results indicate that humpers diets were more planktivorous than the other morphs, consistent with previous research. Results of the niche overlap analysis suggests some degree of generalist feeding for all morphs. Better characterization of seasonal variation in diet using tracers that reflect more recent feeding (e.g., fatty acids, stomach contents, and/or stable isotope analyses performed on tissues that turnover more quickly than muscle) are needed to further elucidate among-morph differences and similarities in diet and trophic ecology
Caracterização microestrutural da argila expandida para aplicação como agregado em concreto estrutural leve Microstructural evaluation of expanded clay to be used as lightweight aggregate in structural concrete
A utilização da argila expandida como agregado graúdo é economicamente viável na fabricação de concretos devido à redução da massa especifica que estes agregados proporcionam, minimizando os carregamentos atuantes nas estruturas. O objetivo deste trabalho é caracterizar a microestrutura do agregado leve de argila expandida visando sua utilização na fabricação de concretos. Na caracterização física da argila expandida foram avaliadas a massa unitária, a granulometria e a absorção de água por imersão total do agregado. Na caracterização microestrutural, foram realizadas análise química, microscopia eletrônica de varredura, difração de raios X e porosimetria por intrusão de mercúrio. A argila expandida apresentou granulometria entre as britas com graduação 0 e 1, e apresentou alta absorção de água devido à elevada porosidade deste agregado. Na análise de difração de raios X evidenciou-se a presença de sílica na forma mineral de alfa-quartzo, silicato de magnésio e óxido de alumínio e magnésio.<br>The use of expanded clay as aggregate is economically feasible in the manufacturing of concrete due to the decrease in bulk density, provided by these aggregates, minimizing the total weight of the structures. The objective of this work is to characterize the microstructure of expanded clay aggregates which are used in the manufacturing of lightweight concretes. The expanded clay was evaluated concerning of the density, the granulometry and water absorption after total immersion of the aggregate. The chemical analysis, scanning electron microscopy, X-ray diffraction and mercury intrusion porosimetry were used as well. The expanded clay presented granulometry between the aggregates grades 0 and 1 and high water absorption due to the high porosity of the aggregate. The X-ray diffraction data showed the presence of alpha-quartz, magnesium silicate and magnesium aluminum oxide
- …